home / skills / wshobson / agents / python-resilience

This skill helps you implement Python resilience patterns with retries, timeouts, and fault-tolerant decorators to build reliable services.

This is most likely a fork of the python-resilience-skill skill from julianobarbosa
npx playbooks add skill wshobson/agents --skill python-resilience

Review the files below or copy the command above to add this skill to your agents.

Files (1)
SKILL.md
10.9 KB
---
name: python-resilience
description: Python resilience patterns including automatic retries, exponential backoff, timeouts, and fault-tolerant decorators. Use when adding retry logic, implementing timeouts, building fault-tolerant services, or handling transient failures.
---

# Python Resilience Patterns

Build fault-tolerant Python applications that gracefully handle transient failures, network issues, and service outages. Resilience patterns keep systems running when dependencies are unreliable.

## When to Use This Skill

- Adding retry logic to external service calls
- Implementing timeouts for network operations
- Building fault-tolerant microservices
- Handling rate limiting and backpressure
- Creating infrastructure decorators
- Designing circuit breakers

## Core Concepts

### 1. Transient vs Permanent Failures

Retry transient errors (network timeouts, temporary service issues). Don't retry permanent errors (invalid credentials, bad requests).

### 2. Exponential Backoff

Increase wait time between retries to avoid overwhelming recovering services.

### 3. Jitter

Add randomness to backoff to prevent thundering herd when many clients retry simultaneously.

### 4. Bounded Retries

Cap both attempt count and total duration to prevent infinite retry loops.

## Quick Start

```python
from tenacity import retry, stop_after_attempt, wait_exponential_jitter

@retry(
    stop=stop_after_attempt(3),
    wait=wait_exponential_jitter(initial=1, max=10),
)
def call_external_service(request: dict) -> dict:
    return httpx.post("https://api.example.com", json=request).json()
```

## Fundamental Patterns

### Pattern 1: Basic Retry with Tenacity

Use the `tenacity` library for production-grade retry logic. For simpler cases, consider built-in retry functionality or a lightweight custom implementation.

```python
from tenacity import (
    retry,
    stop_after_attempt,
    stop_after_delay,
    wait_exponential_jitter,
    retry_if_exception_type,
)

TRANSIENT_ERRORS = (ConnectionError, TimeoutError, OSError)

@retry(
    retry=retry_if_exception_type(TRANSIENT_ERRORS),
    stop=stop_after_attempt(5) | stop_after_delay(60),
    wait=wait_exponential_jitter(initial=1, max=30),
)
def fetch_data(url: str) -> dict:
    """Fetch data with automatic retry on transient failures."""
    response = httpx.get(url, timeout=30)
    response.raise_for_status()
    return response.json()
```

### Pattern 2: Retry Only Appropriate Errors

Whitelist specific transient exceptions. Never retry:

- `ValueError`, `TypeError` - These are bugs, not transient issues
- `AuthenticationError` - Invalid credentials won't become valid
- HTTP 4xx errors (except 429) - Client errors are permanent

```python
from tenacity import retry, retry_if_exception_type
import httpx

# Define what's retryable
RETRYABLE_EXCEPTIONS = (
    ConnectionError,
    TimeoutError,
    httpx.ConnectTimeout,
    httpx.ReadTimeout,
)

@retry(
    retry=retry_if_exception_type(RETRYABLE_EXCEPTIONS),
    stop=stop_after_attempt(3),
    wait=wait_exponential_jitter(initial=1, max=10),
)
def resilient_api_call(endpoint: str) -> dict:
    """Make API call with retry on network issues."""
    return httpx.get(endpoint, timeout=10).json()
```

### Pattern 3: HTTP Status Code Retries

Retry specific HTTP status codes that indicate transient issues.

```python
from tenacity import retry, retry_if_result, stop_after_attempt
import httpx

RETRY_STATUS_CODES = {429, 502, 503, 504}

def should_retry_response(response: httpx.Response) -> bool:
    """Check if response indicates a retryable error."""
    return response.status_code in RETRY_STATUS_CODES

@retry(
    retry=retry_if_result(should_retry_response),
    stop=stop_after_attempt(3),
    wait=wait_exponential_jitter(initial=1, max=10),
)
def http_request(method: str, url: str, **kwargs) -> httpx.Response:
    """Make HTTP request with retry on transient status codes."""
    return httpx.request(method, url, timeout=30, **kwargs)
```

### Pattern 4: Combined Exception and Status Retry

Handle both network exceptions and HTTP status codes.

```python
from tenacity import (
    retry,
    retry_if_exception_type,
    retry_if_result,
    stop_after_attempt,
    wait_exponential_jitter,
    before_sleep_log,
)
import logging
import httpx

logger = logging.getLogger(__name__)

TRANSIENT_EXCEPTIONS = (
    ConnectionError,
    TimeoutError,
    httpx.ConnectError,
    httpx.ReadTimeout,
)
RETRY_STATUS_CODES = {429, 500, 502, 503, 504}

def is_retryable_response(response: httpx.Response) -> bool:
    return response.status_code in RETRY_STATUS_CODES

@retry(
    retry=(
        retry_if_exception_type(TRANSIENT_EXCEPTIONS) |
        retry_if_result(is_retryable_response)
    ),
    stop=stop_after_attempt(5),
    wait=wait_exponential_jitter(initial=1, max=30),
    before_sleep=before_sleep_log(logger, logging.WARNING),
)
def robust_http_call(
    method: str,
    url: str,
    **kwargs,
) -> httpx.Response:
    """HTTP call with comprehensive retry handling."""
    return httpx.request(method, url, timeout=30, **kwargs)
```

## Advanced Patterns

### Pattern 5: Logging Retry Attempts

Track retry behavior for debugging and alerting.

```python
from tenacity import retry, stop_after_attempt, wait_exponential
import structlog

logger = structlog.get_logger()

def log_retry_attempt(retry_state):
    """Log detailed retry information."""
    exception = retry_state.outcome.exception()
    logger.warning(
        "Retrying operation",
        attempt=retry_state.attempt_number,
        exception_type=type(exception).__name__,
        exception_message=str(exception),
        next_wait_seconds=retry_state.next_action.sleep if retry_state.next_action else None,
    )

@retry(
    stop=stop_after_attempt(3),
    wait=wait_exponential(multiplier=1, max=10),
    before_sleep=log_retry_attempt,
)
def call_with_logging(request: dict) -> dict:
    """External call with retry logging."""
    ...
```

### Pattern 6: Timeout Decorator

Create reusable timeout decorators for consistent timeout handling.

```python
import asyncio
from functools import wraps
from typing import TypeVar, Callable

T = TypeVar("T")

def with_timeout(seconds: float):
    """Decorator to add timeout to async functions."""
    def decorator(func: Callable[..., T]) -> Callable[..., T]:
        @wraps(func)
        async def wrapper(*args, **kwargs) -> T:
            return await asyncio.wait_for(
                func(*args, **kwargs),
                timeout=seconds,
            )
        return wrapper
    return decorator

@with_timeout(30)
async def fetch_with_timeout(url: str) -> dict:
    """Fetch URL with 30 second timeout."""
    async with httpx.AsyncClient() as client:
        response = await client.get(url)
        return response.json()
```

### Pattern 7: Cross-Cutting Concerns via Decorators

Stack decorators to separate infrastructure from business logic.

```python
from functools import wraps
from typing import TypeVar, Callable
import structlog

logger = structlog.get_logger()
T = TypeVar("T")

def traced(name: str | None = None):
    """Add tracing to function calls."""
    def decorator(func: Callable[..., T]) -> Callable[..., T]:
        span_name = name or func.__name__

        @wraps(func)
        async def wrapper(*args, **kwargs) -> T:
            logger.info("Operation started", operation=span_name)
            try:
                result = await func(*args, **kwargs)
                logger.info("Operation completed", operation=span_name)
                return result
            except Exception as e:
                logger.error("Operation failed", operation=span_name, error=str(e))
                raise
        return wrapper
    return decorator

# Stack multiple concerns
@traced("fetch_user_data")
@with_timeout(30)
@retry(stop=stop_after_attempt(3), wait=wait_exponential_jitter())
async def fetch_user_data(user_id: str) -> dict:
    """Fetch user with tracing, timeout, and retry."""
    ...
```

### Pattern 8: Dependency Injection for Testability

Pass infrastructure components through constructors for easy testing.

```python
from dataclasses import dataclass
from typing import Protocol

class Logger(Protocol):
    def info(self, msg: str, **kwargs) -> None: ...
    def error(self, msg: str, **kwargs) -> None: ...

class MetricsClient(Protocol):
    def increment(self, metric: str, tags: dict | None = None) -> None: ...
    def timing(self, metric: str, value: float) -> None: ...

@dataclass
class UserService:
    """Service with injected infrastructure."""

    repository: UserRepository
    logger: Logger
    metrics: MetricsClient

    async def get_user(self, user_id: str) -> User:
        self.logger.info("Fetching user", user_id=user_id)
        start = time.perf_counter()

        try:
            user = await self.repository.get(user_id)
            self.metrics.increment("user.fetch.success")
            return user
        except Exception as e:
            self.metrics.increment("user.fetch.error")
            self.logger.error("Failed to fetch user", user_id=user_id, error=str(e))
            raise
        finally:
            elapsed = time.perf_counter() - start
            self.metrics.timing("user.fetch.duration", elapsed)

# Easy to test with fakes
service = UserService(
    repository=FakeRepository(),
    logger=FakeLogger(),
    metrics=FakeMetrics(),
)
```

### Pattern 9: Fail-Safe Defaults

Degrade gracefully when non-critical operations fail.

```python
from typing import TypeVar
from collections.abc import Callable

T = TypeVar("T")

def fail_safe(default: T, log_failure: bool = True):
    """Return default value on failure instead of raising."""
    def decorator(func: Callable[..., T]) -> Callable[..., T]:
        @wraps(func)
        async def wrapper(*args, **kwargs) -> T:
            try:
                return await func(*args, **kwargs)
            except Exception as e:
                if log_failure:
                    logger.warning(
                        "Operation failed, using default",
                        function=func.__name__,
                        error=str(e),
                    )
                return default
        return wrapper
    return decorator

@fail_safe(default=[])
async def get_recommendations(user_id: str) -> list[str]:
    """Get recommendations, return empty list on failure."""
    ...
```

## Best Practices Summary

1. **Retry only transient errors** - Don't retry bugs or authentication failures
2. **Use exponential backoff** - Give services time to recover
3. **Add jitter** - Prevent thundering herd from synchronized retries
4. **Cap total duration** - `stop_after_attempt(5) | stop_after_delay(60)`
5. **Log every retry** - Silent retries hide systemic problems
6. **Use decorators** - Keep retry logic separate from business logic
7. **Inject dependencies** - Make infrastructure testable
8. **Set timeouts everywhere** - Every network call needs a timeout
9. **Fail gracefully** - Return cached/default values for non-critical paths
10. **Monitor retry rates** - High retry rates indicate underlying issues

Overview

This skill provides pragmatic Python resilience patterns for building fault-tolerant services: automatic retries, exponential backoff with jitter, timeouts, and reusable decorators. It packages concrete patterns and small examples to add robust retry logic, graceful degradation, and observability to networked and distributed code. Use these patterns to reduce outages caused by transient failures and to make services easier to test and maintain.

How this skill works

The skill documents and demonstrates patterns that inspect exceptions and HTTP responses to decide when to retry, combine stop conditions (attempt count and total delay), and apply exponential backoff with jitter. It includes decorators for timeouts, tracing, fail-safe defaults, and logging hooks so infrastructure concerns are layered away from business logic. Examples show integration with httpx and tenacity, and recommend dependency injection for testability and metrics.

When to use it

  • Adding retry logic around external API or network calls that can fail transiently
  • Implementing per-call timeouts to avoid hanging requests
  • Building microservices that must tolerate downstream outages without cascading failures
  • Handling rate limits and transient HTTP status codes (e.g., 429, 502, 503, 504)
  • Creating reusable decorators for cross-cutting concerns like tracing, timeouts, and retries

Best practices

  • Retry only transient errors; do not retry programming or auth errors
  • Use exponential backoff and add jitter to avoid thundering herd
  • Bound retries by attempts and total duration to prevent infinite loops
  • Log each retry attempt and monitor retry rates for systemic issues
  • Set timeouts on every network call and inject dependencies for testability
  • Provide fail-safe defaults for non-critical operations to degrade gracefully

Example use cases

  • Wrap HTTP client calls with combined exception + status-code retries for robust API integration
  • Decorate async fetch functions with a timeout decorator to enforce SLAs
  • Stack tracing, timeout, and retry decorators to separate observability from business logic
  • Use injected fake clients in unit tests to validate retry behavior without network access
  • Return cached or default results for optional features using a fail-safe decorator

FAQ

Which errors should I never retry?

Do not retry programming errors (ValueError, TypeError), authentication failures, or most 4xx HTTP client errors except 429.

How do I avoid synchronized retries across clients?

Add jitter to your backoff strategy so retry intervals include randomness and prevent thundering herd problems.