home / skills / julianobarbosa / claude-code-skills / python-resilience-skill

python-resilience-skill skill

/skills/python-resilience-skill

This skill helps you implement robust resilience patterns in Python, including retries, backoff, timeouts, and fault-tolerant decorators for flaky services.

npx playbooks add skill julianobarbosa/claude-code-skills --skill python-resilience-skill

Review the files below or copy the command above to add this skill to your agents.

Files (1)
SKILL.md
10.9 KB
---
name: python-resilience
description: Python resilience patterns including automatic retries, exponential backoff, timeouts, and fault-tolerant decorators. Use when adding retry logic, implementing timeouts, building fault-tolerant services, or handling transient failures.
---

# Python Resilience Patterns

Build fault-tolerant Python applications that gracefully handle transient failures, network issues, and service outages. Resilience patterns keep systems running when dependencies are unreliable.

## When to Use This Skill

- Adding retry logic to external service calls
- Implementing timeouts for network operations
- Building fault-tolerant microservices
- Handling rate limiting and backpressure
- Creating infrastructure decorators
- Designing circuit breakers

## Core Concepts

### 1. Transient vs Permanent Failures

Retry transient errors (network timeouts, temporary service issues). Don't retry permanent errors (invalid credentials, bad requests).

### 2. Exponential Backoff

Increase wait time between retries to avoid overwhelming recovering services.

### 3. Jitter

Add randomness to backoff to prevent thundering herd when many clients retry simultaneously.

### 4. Bounded Retries

Cap both attempt count and total duration to prevent infinite retry loops.

## Quick Start

```python
from tenacity import retry, stop_after_attempt, wait_exponential_jitter

@retry(
    stop=stop_after_attempt(3),
    wait=wait_exponential_jitter(initial=1, max=10),
)
def call_external_service(request: dict) -> dict:
    return httpx.post("https://api.example.com", json=request).json()
```

## Fundamental Patterns

### Pattern 1: Basic Retry with Tenacity

Use the `tenacity` library for production-grade retry logic. For simpler cases, consider built-in retry functionality or a lightweight custom implementation.

```python
from tenacity import (
    retry,
    stop_after_attempt,
    stop_after_delay,
    wait_exponential_jitter,
    retry_if_exception_type,
)

TRANSIENT_ERRORS = (ConnectionError, TimeoutError, OSError)

@retry(
    retry=retry_if_exception_type(TRANSIENT_ERRORS),
    stop=stop_after_attempt(5) | stop_after_delay(60),
    wait=wait_exponential_jitter(initial=1, max=30),
)
def fetch_data(url: str) -> dict:
    """Fetch data with automatic retry on transient failures."""
    response = httpx.get(url, timeout=30)
    response.raise_for_status()
    return response.json()
```

### Pattern 2: Retry Only Appropriate Errors

Whitelist specific transient exceptions. Never retry:

- `ValueError`, `TypeError` - These are bugs, not transient issues
- `AuthenticationError` - Invalid credentials won't become valid
- HTTP 4xx errors (except 429) - Client errors are permanent

```python
from tenacity import retry, retry_if_exception_type
import httpx

# Define what's retryable
RETRYABLE_EXCEPTIONS = (
    ConnectionError,
    TimeoutError,
    httpx.ConnectTimeout,
    httpx.ReadTimeout,
)

@retry(
    retry=retry_if_exception_type(RETRYABLE_EXCEPTIONS),
    stop=stop_after_attempt(3),
    wait=wait_exponential_jitter(initial=1, max=10),
)
def resilient_api_call(endpoint: str) -> dict:
    """Make API call with retry on network issues."""
    return httpx.get(endpoint, timeout=10).json()
```

### Pattern 3: HTTP Status Code Retries

Retry specific HTTP status codes that indicate transient issues.

```python
from tenacity import retry, retry_if_result, stop_after_attempt
import httpx

RETRY_STATUS_CODES = {429, 502, 503, 504}

def should_retry_response(response: httpx.Response) -> bool:
    """Check if response indicates a retryable error."""
    return response.status_code in RETRY_STATUS_CODES

@retry(
    retry=retry_if_result(should_retry_response),
    stop=stop_after_attempt(3),
    wait=wait_exponential_jitter(initial=1, max=10),
)
def http_request(method: str, url: str, **kwargs) -> httpx.Response:
    """Make HTTP request with retry on transient status codes."""
    return httpx.request(method, url, timeout=30, **kwargs)
```

### Pattern 4: Combined Exception and Status Retry

Handle both network exceptions and HTTP status codes.

```python
from tenacity import (
    retry,
    retry_if_exception_type,
    retry_if_result,
    stop_after_attempt,
    wait_exponential_jitter,
    before_sleep_log,
)
import logging
import httpx

logger = logging.getLogger(__name__)

TRANSIENT_EXCEPTIONS = (
    ConnectionError,
    TimeoutError,
    httpx.ConnectError,
    httpx.ReadTimeout,
)
RETRY_STATUS_CODES = {429, 500, 502, 503, 504}

def is_retryable_response(response: httpx.Response) -> bool:
    return response.status_code in RETRY_STATUS_CODES

@retry(
    retry=(
        retry_if_exception_type(TRANSIENT_EXCEPTIONS) |
        retry_if_result(is_retryable_response)
    ),
    stop=stop_after_attempt(5),
    wait=wait_exponential_jitter(initial=1, max=30),
    before_sleep=before_sleep_log(logger, logging.WARNING),
)
def robust_http_call(
    method: str,
    url: str,
    **kwargs,
) -> httpx.Response:
    """HTTP call with comprehensive retry handling."""
    return httpx.request(method, url, timeout=30, **kwargs)
```

## Advanced Patterns

### Pattern 5: Logging Retry Attempts

Track retry behavior for debugging and alerting.

```python
from tenacity import retry, stop_after_attempt, wait_exponential
import structlog

logger = structlog.get_logger()

def log_retry_attempt(retry_state):
    """Log detailed retry information."""
    exception = retry_state.outcome.exception()
    logger.warning(
        "Retrying operation",
        attempt=retry_state.attempt_number,
        exception_type=type(exception).__name__,
        exception_message=str(exception),
        next_wait_seconds=retry_state.next_action.sleep if retry_state.next_action else None,
    )

@retry(
    stop=stop_after_attempt(3),
    wait=wait_exponential(multiplier=1, max=10),
    before_sleep=log_retry_attempt,
)
def call_with_logging(request: dict) -> dict:
    """External call with retry logging."""
    ...
```

### Pattern 6: Timeout Decorator

Create reusable timeout decorators for consistent timeout handling.

```python
import asyncio
from functools import wraps
from typing import TypeVar, Callable

T = TypeVar("T")

def with_timeout(seconds: float):
    """Decorator to add timeout to async functions."""
    def decorator(func: Callable[..., T]) -> Callable[..., T]:
        @wraps(func)
        async def wrapper(*args, **kwargs) -> T:
            return await asyncio.wait_for(
                func(*args, **kwargs),
                timeout=seconds,
            )
        return wrapper
    return decorator

@with_timeout(30)
async def fetch_with_timeout(url: str) -> dict:
    """Fetch URL with 30 second timeout."""
    async with httpx.AsyncClient() as client:
        response = await client.get(url)
        return response.json()
```

### Pattern 7: Cross-Cutting Concerns via Decorators

Stack decorators to separate infrastructure from business logic.

```python
from functools import wraps
from typing import TypeVar, Callable
import structlog

logger = structlog.get_logger()
T = TypeVar("T")

def traced(name: str | None = None):
    """Add tracing to function calls."""
    def decorator(func: Callable[..., T]) -> Callable[..., T]:
        span_name = name or func.__name__

        @wraps(func)
        async def wrapper(*args, **kwargs) -> T:
            logger.info("Operation started", operation=span_name)
            try:
                result = await func(*args, **kwargs)
                logger.info("Operation completed", operation=span_name)
                return result
            except Exception as e:
                logger.error("Operation failed", operation=span_name, error=str(e))
                raise
        return wrapper
    return decorator

# Stack multiple concerns
@traced("fetch_user_data")
@with_timeout(30)
@retry(stop=stop_after_attempt(3), wait=wait_exponential_jitter())
async def fetch_user_data(user_id: str) -> dict:
    """Fetch user with tracing, timeout, and retry."""
    ...
```

### Pattern 8: Dependency Injection for Testability

Pass infrastructure components through constructors for easy testing.

```python
from dataclasses import dataclass
from typing import Protocol

class Logger(Protocol):
    def info(self, msg: str, **kwargs) -> None: ...
    def error(self, msg: str, **kwargs) -> None: ...

class MetricsClient(Protocol):
    def increment(self, metric: str, tags: dict | None = None) -> None: ...
    def timing(self, metric: str, value: float) -> None: ...

@dataclass
class UserService:
    """Service with injected infrastructure."""

    repository: UserRepository
    logger: Logger
    metrics: MetricsClient

    async def get_user(self, user_id: str) -> User:
        self.logger.info("Fetching user", user_id=user_id)
        start = time.perf_counter()

        try:
            user = await self.repository.get(user_id)
            self.metrics.increment("user.fetch.success")
            return user
        except Exception as e:
            self.metrics.increment("user.fetch.error")
            self.logger.error("Failed to fetch user", user_id=user_id, error=str(e))
            raise
        finally:
            elapsed = time.perf_counter() - start
            self.metrics.timing("user.fetch.duration", elapsed)

# Easy to test with fakes
service = UserService(
    repository=FakeRepository(),
    logger=FakeLogger(),
    metrics=FakeMetrics(),
)
```

### Pattern 9: Fail-Safe Defaults

Degrade gracefully when non-critical operations fail.

```python
from typing import TypeVar
from collections.abc import Callable

T = TypeVar("T")

def fail_safe(default: T, log_failure: bool = True):
    """Return default value on failure instead of raising."""
    def decorator(func: Callable[..., T]) -> Callable[..., T]:
        @wraps(func)
        async def wrapper(*args, **kwargs) -> T:
            try:
                return await func(*args, **kwargs)
            except Exception as e:
                if log_failure:
                    logger.warning(
                        "Operation failed, using default",
                        function=func.__name__,
                        error=str(e),
                    )
                return default
        return wrapper
    return decorator

@fail_safe(default=[])
async def get_recommendations(user_id: str) -> list[str]:
    """Get recommendations, return empty list on failure."""
    ...
```

## Best Practices Summary

1. **Retry only transient errors** - Don't retry bugs or authentication failures
2. **Use exponential backoff** - Give services time to recover
3. **Add jitter** - Prevent thundering herd from synchronized retries
4. **Cap total duration** - `stop_after_attempt(5) | stop_after_delay(60)`
5. **Log every retry** - Silent retries hide systemic problems
6. **Use decorators** - Keep retry logic separate from business logic
7. **Inject dependencies** - Make infrastructure testable
8. **Set timeouts everywhere** - Every network call needs a timeout
9. **Fail gracefully** - Return cached/default values for non-critical paths
10. **Monitor retry rates** - High retry rates indicate underlying issues

Overview

This skill packages practical Python resilience patterns for building fault-tolerant services. It shows how to add retries, exponential backoff with jitter, timeouts, logging, and decorators that separate infrastructure concerns from business logic. Use these patterns to handle transient network failures, rate limits, and service outages with predictable behavior.

How this skill works

The skill explains and demonstrates concrete implementations using libraries like tenacity and httpx, plus small utility decorators for timeouts, fail-safe defaults, and tracing. It inspects when to retry (exception types and HTTP status codes), how to back off with jitter, and how to bound retries by attempts or elapsed time. It also covers logging, dependency injection for testability, and stacking decorators to compose concerns.

When to use it

  • Adding retry logic around external API calls or RPCs
  • Implementing timeouts for network or async operations
  • Building microservices that must remain available despite flaky dependencies
  • Handling HTTP rate limiting (429) and transient 5xx errors
  • Creating reusable infrastructure decorators (tracing, timeout, retry)
  • Designing circuit breakers, graceful degradation, or fail-safe defaults

Best practices

  • Retry only transient errors; avoid retrying bugs or auth failures
  • Use exponential backoff and add jitter to avoid thundering herd
  • Cap retries by attempts and total duration to prevent infinite loops
  • Log each retry attempt and reason for observability
  • Inject infrastructure (logger, metrics, repositories) for testability
  • Set explicit timeouts on every network call and provide fail-safe defaults

Example use cases

  • Wrap an HTTP client call in tenacity to retry on network timeouts and 5xx responses
  • Compose decorators: tracing + timeout + retry for an async endpoint handler
  • Use fail_safe decorator to return cached or default values for non-critical features
  • Inject fake repositories and loggers in unit tests to verify retry and metrics behavior
  • Log retry metrics and alert when retry rates spike to detect systemic failures

FAQ

When should I not use retries?

Do not retry permanent errors like authentication failures, invalid input, or programming errors; retries only mask transient problems and waste resources for permanent failures.

How do I choose retry counts and backoff settings?

Start with conservative limits (3–5 attempts, total duration bounded like 30–60s) and use exponential backoff with jitter. Tune based on SLA, upstream recovery time, and observed retry rates.

Can decorators be stacked safely with async functions?

Yes. Use decorators that preserve async semantics (wrap with async def and await inner calls). Order matters: typically tracing -> timeout -> retry so timeout applies to each attempt.