home / skills / plurigrid / asi / specter-acset
This skill enables bidirectional navigation and inlined caching for Julia data structures, optimizing selection and transformation with composable navigators.
npx playbooks add skill plurigrid/asi --skill specter-acsetReview the files below or copy the command above to add this skill to your agents.
---
name: specter-acset
description: "Specter-style bidirectional navigation for Julia Collections, S-expressions, and ACSets with inline caching"
license: MIT
metadata:
source: music-topos + Specter CPS patterns (Nathan Marz)
trit: 0
gf3_conserved: true
version: 1.0.0
---
# specter-acset
> Inline-cached bidirectional navigation for Julia data structures
**Version**: 1.0.0
**Trit**: 0 (Ergodic - coordinates navigation)
## From Clojure Specter to Julia
Nathan Marz's Specter library for Clojure provides **bidirectional data navigation** where the same path expression works for both selection AND transformation. This skill ports those patterns to Julia with extensions for S-expressions and ACSets.
## Key Insights from Specter Talks
### "Rama on Clojure's Terms" (2024)
> "comp-navs is fast because it's just object allocation + field sets"
Specter's performance comes from:
1. **Inline caching**: Paths compiled once, reused at callsite
2. **Continuation-passing style**: Chains of next_fn calls
3. **Navigator protocol**: Uniform interface for all data types
### "Specter: Powerful and Simple Data Structure Manipulation"
> "Without Specter, you need different code for selection vs transformation"
The bidirectionality principle: A path is a **lens** that focuses on parts of a structure.
## Navigator Protocol
```julia
abstract type Navigator end
# Core operations - bidirectional by design
function nav_select(nav::Navigator, structure, next_fn)
# Traverse and collect
end
function nav_transform(nav::Navigator, structure, next_fn)
# Traverse and modify
end
```
## Primitive Navigators
| Navigator | Select Behavior | Transform Behavior |
|-----------|-----------------|-------------------|
| `ALL` | Each element | Map over all |
| `FIRST` | First element | Update first only |
| `LAST` | Last element | Update last only |
| `keypath(k)` | Value at key | Update value at key |
| `pred(f)` | Stay if f(x) true | Transform if f(x) true |
## Composition: comp_navs (The Key to Performance)
Nathan Marz's critical insight: **composition is just allocation + field sets**.
### Why This Matters
Traditional approaches compile/interpret paths at composition time. Specter does **zero work** at composition - it just creates an object:
```julia
# Specter's key to performance: ONLY allocation + field sets
struct ComposedNav <: Navigator
navs::Vector{Navigator} # Just a field - no processing
end
# comp_navs does ONE thing: allocate and set field
comp_navs(navs::Navigator...) = ComposedNav(collect(navs))
# That's it. No compilation. No interpretation. No optimization.
# Just: new ComposedNav() + set navs field
```
### The Magic: Work Happens at Traversal
All the actual work happens when you call `select` or `transform`:
```julia
# Chain of continuations - CPS (continuation-passing style)
function nav_select(cn::ComposedNav, structure, next_fn)
function chain_select(navs, struct_val)
if isempty(navs)
next_fn(struct_val) # Base case: call continuation
else
# Recursive case: process first nav, chain the rest
nav_select(first(navs), struct_val,
s -> chain_select(navs[2:end], s))
end
end
chain_select(cn.navs, structure)
end
```
### Why CPS + Lazy Composition = Fast
```
Traditional:
compose(a, b, c) → [compile a+b+c] → CompiledPath
Specter:
comp_navs(a, b, c) → ComposedNav{[a, b, c]} # Just store refs
select(path, data) → [chain continuations] → results
```
**Benefits:**
1. **O(1) composition** - just allocate, no work
2. **Inline caching** - same ComposedNav reused at callsite
3. **Late binding** - dynamic navs resolved at traversal time
4. **No intermediate allocations** - CPS avoids building result lists
### Inline Caching Pattern
```julia
# At each callsite, the path is compiled ONCE and cached:
@compiled_select([ALL, pred(iseven)], data)
# Expands to something like:
let cached_nav = nothing
if cached_nav === nothing
cached_nav = comp_navs(ALL, pred(iseven)) # First call only
end
nav_select(cached_nav, data, identity) # Reuse forever
end
```
This is why Specter achieves **near-hand-written performance** despite the abstraction.
## S-expression Navigators
Unique to Julia - navigate typed AST nodes:
```julia
# Type definitions
abstract type Sexp end
struct Atom <: Sexp
value::String
end
struct SList <: Sexp
children::Vector{Sexp}
end
# Navigators
SEXP_HEAD # → first(children)
SEXP_TAIL # → children[2:end]
SEXP_CHILDREN # → children vector
SEXP_WALK # Recursive prewalk
sexp_nth(n) # → children[n]
ATOM_VALUE # → atom.value
```
### Example: AST Transformation
```julia
sexp = parse_sexp("(define (square x) (* x x))")
# Rename function
renamed = transform(
[sexp_nth(2), sexp_nth(1), ATOM_VALUE],
_ -> "cube",
sexp
)
# → (define (cube x) (* x x))
```
## ACSet Navigators
Navigate category-theoretic databases:
```julia
# Navigate morphism values
acset_field(:E, :src)
# Filter parts by predicate
acset_where(:E, :src, ==(1))
# All parts of an object
acset_parts(:V)
```
### Example: Graph Transformation
```julia
g = @acset Graph begin V=4; E=3; src=[1,2,3]; tgt=[2,3,4] end
# Select: get all source vertices
select([acset_field(:E, :src)], g) # → [1, 2, 3]
# Transform: shift targets
g2 = transform([acset_field(:E, :tgt)], t -> mod1(t+1, 4), g)
```
## Dynamic Navigators
### selected(subpath)
Stay at current position if subpath matches:
```julia
# Select values > 5
select([ALL, selected(pred(x -> x > 5))], [1,2,3,4,5,6,7,8,9,10])
# → [6, 7, 8, 9, 10]
```
### if_path(cond, then, else)
Conditional navigation:
```julia
if_path(pred(iseven),
keypath(:even_branch),
keypath(:odd_branch))
```
## Coercion (Like Specter's coerce-nav)
```julia
coerce_nav(x::Navigator) = x
coerce_nav(s::Symbol) = keypath(s)
coerce_nav(f::Function) = pred(f)
coerce_nav(v::Vector) = comp_navs(coerce_nav.(v)...)
```
## API
```julia
# High-level interface
select(path, data) # Collect matches
select_one(path, data) # Single match or nothing
transform(path, fn, data) # Transform matches
setval(path, value, data) # Set matches to value
```
## Comparison: Clojure vs Julia
| Clojure (Specter) | Julia (SpecterACSet) | Notes |
|-------------------|---------------------|-------|
| `(select [ALL even?] data)` | `select([ALL, pred(iseven)], data)` | Same pattern |
| `(transform [ALL even?] f data)` | `transform([ALL, pred(iseven)], f, data)` | Bidirectional |
| Keywords implicit | `keypath(:k)` explicit | Type safety |
| No ACSet support | `acset_field`, `acset_where` | Category theory |
| No typed sexp | `Atom`/`SList` discrimination | AST navigation |
## GF(3) Triads
```
three-match (-1) ⊗ specter-acset (0) ⊗ gay-mcp (+1) = 0 ✓
lispsyntax-acset (-1) ⊗ specter-acset (0) ⊗ cider-clojure (+1) = 0 ✓
```
## Files
- **Implementation**: `lib/specter_acset.jl`
- **Babashka comparison**: `lib/specter_comparison.bb`
## References
- [Specter GitHub](https://github.com/redplanetlabs/specter)
- Nathan Marz: "Rama on Clojure's Terms" (2024)
- Nathan Marz: "Specter: Powerful and Simple Data Structure Manipulation"
- [Lens laws](https://hackage.haskell.org/package/lens) (Haskell perspective)
This skill implements Specter-style bidirectional navigation for Julia data structures, S-expressions, and ACSets with inline caching to achieve near-hand-written performance. It brings composable navigators, continuation-passing traversal, and callsite caching so the same path expression can both select and transform data. Use it to write concise, reusable queries and transformations over nested collections, typed ASTs, and category-theoretic datasets.
Navigators are small objects that implement nav_select and nav_transform. Paths are composed by allocating a ComposedNav that simply stores navigator references; no compilation occurs at composition time. Traversal uses continuation-passing style (CPS) so work happens only during select/transform calls. Inline caching at the callsite stores a compiled ComposedNav for reuse, delivering O(1) composition and minimal overhead. Special navigator sets handle S-expressions and ACSets with type-aware operations.
How does composition stay cheap?
Composition only allocates a ComposedNav that stores navigator references. No path compilation or analysis happens at composition time, so composition is O(1).
When should I use inline caching?
Cache composed paths at the callsite for repeated traversals. The first call allocates the ComposedNav; subsequent calls reuse it to avoid allocation and improve speed.