home / skills / plurigrid / asi / shadow-goblin
This skill connects graph theory tooling with domain-specific DSL concepts to enable modular, embeddable analysis workflows.
npx playbooks add skill plurigrid/asi --skill shadow-goblinReview the files below or copy the command above to add this skill to your agents.
---
name: shadow-goblin
description: shadow-goblin
version: 1.0.0
---
# shadow-goblin
Auto-generated skill placeholder.
## Scientific Skill Interleaving
This skill connects to the K-Dense-AI/claude-scientific-skills ecosystem:
### Graph Theory
- **networkx** [○] via bicomodule
- Universal graph hub
### Bibliography References
- `general`: 734 citations in bib.duckdb
## SDF Interleaving
This skill connects to **Software Design for Flexibility** (Hanson & Sussman, 2021):
### Primary Chapter: 2. Domain-Specific Languages
**Concepts**: DSL, wrapper, pattern-directed, embedding
### GF(3) Balanced Triad
```
shadow-goblin (○) + SDF.Ch2 (−) + [balancer] (+) = 0
```
**Skill Trit**: 0 (ERGODIC - coordination)
### Connection Pattern
DSLs embed domain knowledge. This skill defines domain-specific operations.
## Cat# Integration
This skill maps to **Cat# = Comod(P)** as a bicomodule in the equipment structure:
```
Trit: 0 (ERGODIC)
Home: Prof
Poly Op: ⊗
Kan Role: Adj
Color: #26D826
```
### GF(3) Naturality
The skill participates in triads satisfying:
```
(-1) + (0) + (+1) ≡ 0 (mod 3)
```
This ensures compositional coherence in the Cat# equipment structure.This skill implements a compact, domain-aware wrapper for defining and composing small domain-specific languages and algebraic structures used in topological chemistry workflows. It exposes compositional patterns and lightweight tooling to embed operations, define bicomodule relationships, and reason about GF(3) triads. The design emphasizes interoperability with graph and bibliography hubs and flexible composition for experiment scripting.
The skill provides primitives to declare DSL operations, compose them as bicomodules, and validate triadic coherence conditions like GF(3) naturality. It inspects module metadata, maps poly-operations (⊗) between contexts, and emits simple proofs or diagnostics about ergodicity and kan-adjoints. Integrations surface networkx-style graph hooks and bibliography references to aid reproducible workflows.
Does this skill run experiments or perform numerical chemistry calculations?
No. It focuses on defining, composing, and validating DSL-style operators and algebraic coherence. Use specialized numerical packages for simulations and link them into workflows.
How does integration with graph tools work?
The skill exposes hooks compatible with common graph libraries so you can map module relationships, visualize bicomodule connections, and analyze connectivity or ergodicity.