home / skills / plurigrid / asi / flow-nexus-neural

flow-nexus-neural skill

/skills/flow-nexus-neural

This skill helps you train and deploy neural networks in distributed sandboxes with Flow Nexus, enabling scalable experimentation.

npx playbooks add skill plurigrid/asi --skill flow-nexus-neural

Review the files below or copy the command above to add this skill to your agents.

Files (1)
SKILL.md
15.9 KB
---
name: flow-nexus-neural
description: Train and deploy neural networks in distributed E2B sandboxes with Flow Nexus
version: 1.0.0
category: ai-ml
tags:
  - neural-networks
  - distributed-training
  - machine-learning
  - deep-learning
  - flow-nexus
  - e2b-sandboxes
requires_auth: true
mcp_server: flow-nexus
---

# Flow Nexus Neural Networks

Deploy, train, and manage neural networks in distributed E2B sandbox environments. Train custom models with multiple architectures (feedforward, LSTM, GAN, transformer) or use pre-built templates from the marketplace.

## Prerequisites

```bash
# Add Flow Nexus MCP server
claude mcp add flow-nexus npx flow-nexus@latest mcp start

# Register and login
npx flow-nexus@latest register
npx flow-nexus@latest login
```

## Core Capabilities

### 1. Single-Node Neural Training

Train neural networks with custom architectures and configurations.

**Available Architectures:**
- `feedforward` - Standard fully-connected networks
- `lstm` - Long Short-Term Memory for sequences
- `gan` - Generative Adversarial Networks
- `autoencoder` - Dimensionality reduction
- `transformer` - Attention-based models

**Training Tiers:**
- `nano` - Minimal resources (fast, limited)
- `mini` - Small models
- `small` - Standard models
- `medium` - Complex models
- `large` - Large-scale training

#### Example: Train Custom Classifier

```javascript
mcp__flow-nexus__neural_train({
  config: {
    architecture: {
      type: "feedforward",
      layers: [
        { type: "dense", units: 256, activation: "relu" },
        { type: "dropout", rate: 0.3 },
        { type: "dense", units: 128, activation: "relu" },
        { type: "dropout", rate: 0.2 },
        { type: "dense", units: 64, activation: "relu" },
        { type: "dense", units: 10, activation: "softmax" }
      ]
    },
    training: {
      epochs: 100,
      batch_size: 32,
      learning_rate: 0.001,
      optimizer: "adam"
    },
    divergent: {
      enabled: true,
      pattern: "lateral", // quantum, chaotic, associative, evolutionary
      factor: 0.5
    }
  },
  tier: "small",
  user_id: "your_user_id"
})
```

#### Example: LSTM for Time Series

```javascript
mcp__flow-nexus__neural_train({
  config: {
    architecture: {
      type: "lstm",
      layers: [
        { type: "lstm", units: 128, return_sequences: true },
        { type: "dropout", rate: 0.2 },
        { type: "lstm", units: 64 },
        { type: "dense", units: 1, activation: "linear" }
      ]
    },
    training: {
      epochs: 150,
      batch_size: 64,
      learning_rate: 0.01,
      optimizer: "adam"
    }
  },
  tier: "medium"
})
```

#### Example: Transformer Architecture

```javascript
mcp__flow-nexus__neural_train({
  config: {
    architecture: {
      type: "transformer",
      layers: [
        { type: "embedding", vocab_size: 10000, embedding_dim: 512 },
        { type: "transformer_encoder", num_heads: 8, ff_dim: 2048 },
        { type: "global_average_pooling" },
        { type: "dense", units: 128, activation: "relu" },
        { type: "dense", units: 2, activation: "softmax" }
      ]
    },
    training: {
      epochs: 50,
      batch_size: 16,
      learning_rate: 0.0001,
      optimizer: "adam"
    }
  },
  tier: "large"
})
```

### 2. Model Inference

Run predictions on trained models.

```javascript
mcp__flow-nexus__neural_predict({
  model_id: "model_abc123",
  input: [
    [0.5, 0.3, 0.2, 0.1],
    [0.8, 0.1, 0.05, 0.05],
    [0.2, 0.6, 0.15, 0.05]
  ],
  user_id: "your_user_id"
})
```

**Response:**
```json
{
  "predictions": [
    [0.12, 0.85, 0.03],
    [0.89, 0.08, 0.03],
    [0.05, 0.92, 0.03]
  ],
  "inference_time_ms": 45,
  "model_version": "1.0.0"
}
```

### 3. Template Marketplace

Browse and deploy pre-trained models from the marketplace.

#### List Available Templates

```javascript
mcp__flow-nexus__neural_list_templates({
  category: "classification", // timeseries, regression, nlp, vision, anomaly, generative
  tier: "free", // or "paid"
  search: "sentiment",
  limit: 20
})
```

**Response:**
```json
{
  "templates": [
    {
      "id": "sentiment-analysis-v2",
      "name": "Sentiment Analysis Classifier",
      "description": "Pre-trained BERT model for sentiment analysis",
      "category": "nlp",
      "accuracy": 0.94,
      "downloads": 1523,
      "tier": "free"
    },
    {
      "id": "image-classifier-resnet",
      "name": "ResNet Image Classifier",
      "description": "ResNet-50 for image classification",
      "category": "vision",
      "accuracy": 0.96,
      "downloads": 2341,
      "tier": "paid"
    }
  ]
}
```

#### Deploy Template

```javascript
mcp__flow-nexus__neural_deploy_template({
  template_id: "sentiment-analysis-v2",
  custom_config: {
    training: {
      epochs: 50,
      learning_rate: 0.0001
    }
  },
  user_id: "your_user_id"
})
```

### 4. Distributed Training Clusters

Train large models across multiple E2B sandboxes with distributed computing.

#### Initialize Cluster

```javascript
mcp__flow-nexus__neural_cluster_init({
  name: "large-model-cluster",
  architecture: "transformer", // transformer, cnn, rnn, gnn, hybrid
  topology: "mesh", // mesh, ring, star, hierarchical
  consensus: "proof-of-learning", // byzantine, raft, gossip
  daaEnabled: true, // Decentralized Autonomous Agents
  wasmOptimization: true
})
```

**Response:**
```json
{
  "cluster_id": "cluster_xyz789",
  "name": "large-model-cluster",
  "status": "initializing",
  "topology": "mesh",
  "max_nodes": 100,
  "created_at": "2025-10-19T10:30:00Z"
}
```

#### Deploy Worker Nodes

```javascript
// Deploy parameter server
mcp__flow-nexus__neural_node_deploy({
  cluster_id: "cluster_xyz789",
  node_type: "parameter_server",
  model: "large",
  template: "nodejs",
  capabilities: ["parameter_management", "gradient_aggregation"],
  autonomy: 0.8
})

// Deploy worker nodes
mcp__flow-nexus__neural_node_deploy({
  cluster_id: "cluster_xyz789",
  node_type: "worker",
  model: "xl",
  role: "worker",
  capabilities: ["training", "inference"],
  layers: [
    { type: "transformer_encoder", num_heads: 16 },
    { type: "feed_forward", units: 4096 }
  ],
  autonomy: 0.9
})

// Deploy aggregator
mcp__flow-nexus__neural_node_deploy({
  cluster_id: "cluster_xyz789",
  node_type: "aggregator",
  model: "large",
  capabilities: ["gradient_aggregation", "model_synchronization"]
})
```

#### Connect Cluster Topology

```javascript
mcp__flow-nexus__neural_cluster_connect({
  cluster_id: "cluster_xyz789",
  topology: "mesh" // Override default if needed
})
```

#### Start Distributed Training

```javascript
mcp__flow-nexus__neural_train_distributed({
  cluster_id: "cluster_xyz789",
  dataset: "imagenet", // or custom dataset identifier
  epochs: 100,
  batch_size: 128,
  learning_rate: 0.001,
  optimizer: "adam", // sgd, rmsprop, adagrad
  federated: true // Enable federated learning
})
```

**Federated Learning Example:**
```javascript
mcp__flow-nexus__neural_train_distributed({
  cluster_id: "cluster_xyz789",
  dataset: "medical_images_distributed",
  epochs: 200,
  batch_size: 64,
  learning_rate: 0.0001,
  optimizer: "adam",
  federated: true, // Data stays on local nodes
  aggregation_rounds: 50,
  min_nodes_per_round: 5
})
```

#### Monitor Cluster Status

```javascript
mcp__flow-nexus__neural_cluster_status({
  cluster_id: "cluster_xyz789"
})
```

**Response:**
```json
{
  "cluster_id": "cluster_xyz789",
  "status": "training",
  "nodes": [
    {
      "node_id": "node_001",
      "type": "parameter_server",
      "status": "active",
      "cpu_usage": 0.75,
      "memory_usage": 0.82
    },
    {
      "node_id": "node_002",
      "type": "worker",
      "status": "active",
      "training_progress": 0.45
    }
  ],
  "training_metrics": {
    "current_epoch": 45,
    "total_epochs": 100,
    "loss": 0.234,
    "accuracy": 0.891
  }
}
```

#### Run Distributed Inference

```javascript
mcp__flow-nexus__neural_predict_distributed({
  cluster_id: "cluster_xyz789",
  input_data: JSON.stringify([
    [0.1, 0.2, 0.3],
    [0.4, 0.5, 0.6]
  ]),
  aggregation: "ensemble" // mean, majority, weighted, ensemble
})
```

#### Terminate Cluster

```javascript
mcp__flow-nexus__neural_cluster_terminate({
  cluster_id: "cluster_xyz789"
})
```

### 5. Model Management

#### List Your Models

```javascript
mcp__flow-nexus__neural_list_models({
  user_id: "your_user_id",
  include_public: true
})
```

**Response:**
```json
{
  "models": [
    {
      "model_id": "model_abc123",
      "name": "Custom Classifier v1",
      "architecture": "feedforward",
      "accuracy": 0.92,
      "created_at": "2025-10-15T14:20:00Z",
      "status": "trained"
    },
    {
      "model_id": "model_def456",
      "name": "LSTM Forecaster",
      "architecture": "lstm",
      "mse": 0.0045,
      "created_at": "2025-10-18T09:15:00Z",
      "status": "training"
    }
  ]
}
```

#### Check Training Status

```javascript
mcp__flow-nexus__neural_training_status({
  job_id: "job_training_xyz"
})
```

**Response:**
```json
{
  "job_id": "job_training_xyz",
  "status": "training",
  "progress": 0.67,
  "current_epoch": 67,
  "total_epochs": 100,
  "current_loss": 0.234,
  "estimated_completion": "2025-10-19T12:45:00Z"
}
```

#### Performance Benchmarking

```javascript
mcp__flow-nexus__neural_performance_benchmark({
  model_id: "model_abc123",
  benchmark_type: "comprehensive" // inference, throughput, memory, comprehensive
})
```

**Response:**
```json
{
  "model_id": "model_abc123",
  "benchmarks": {
    "inference_latency_ms": 12.5,
    "throughput_qps": 8000,
    "memory_usage_mb": 245,
    "gpu_utilization": 0.78,
    "accuracy": 0.92,
    "f1_score": 0.89
  },
  "timestamp": "2025-10-19T11:00:00Z"
}
```

#### Create Validation Workflow

```javascript
mcp__flow-nexus__neural_validation_workflow({
  model_id: "model_abc123",
  user_id: "your_user_id",
  validation_type: "comprehensive" // performance, accuracy, robustness, comprehensive
})
```

### 6. Publishing and Marketplace

#### Publish Model as Template

```javascript
mcp__flow-nexus__neural_publish_template({
  model_id: "model_abc123",
  name: "High-Accuracy Sentiment Classifier",
  description: "Fine-tuned BERT model for sentiment analysis with 94% accuracy",
  category: "nlp",
  price: 0, // 0 for free, or credits amount
  user_id: "your_user_id"
})
```

#### Rate a Template

```javascript
mcp__flow-nexus__neural_rate_template({
  template_id: "sentiment-analysis-v2",
  rating: 5,
  review: "Excellent model! Achieved 95% accuracy on my dataset.",
  user_id: "your_user_id"
})
```

## Common Use Cases

### Image Classification with CNN

```javascript
// Initialize cluster for large-scale image training
const cluster = await mcp__flow-nexus__neural_cluster_init({
  name: "image-classification-cluster",
  architecture: "cnn",
  topology: "hierarchical",
  wasmOptimization: true
})

// Deploy worker nodes
await mcp__flow-nexus__neural_node_deploy({
  cluster_id: cluster.cluster_id,
  node_type: "worker",
  model: "large",
  capabilities: ["training", "data_augmentation"]
})

// Start training
await mcp__flow-nexus__neural_train_distributed({
  cluster_id: cluster.cluster_id,
  dataset: "custom_images",
  epochs: 100,
  batch_size: 64,
  learning_rate: 0.001,
  optimizer: "adam"
})
```

### NLP Sentiment Analysis

```javascript
// Use pre-built template
const deployment = await mcp__flow-nexus__neural_deploy_template({
  template_id: "sentiment-analysis-v2",
  custom_config: {
    training: {
      epochs: 30,
      batch_size: 16
    }
  }
})

// Run inference
const result = await mcp__flow-nexus__neural_predict({
  model_id: deployment.model_id,
  input: ["This product is amazing!", "Terrible experience."]
})
```

### Time Series Forecasting

```javascript
// Train LSTM model
const training = await mcp__flow-nexus__neural_train({
  config: {
    architecture: {
      type: "lstm",
      layers: [
        { type: "lstm", units: 128, return_sequences: true },
        { type: "dropout", rate: 0.2 },
        { type: "lstm", units: 64 },
        { type: "dense", units: 1 }
      ]
    },
    training: {
      epochs: 150,
      batch_size: 64,
      learning_rate: 0.01,
      optimizer: "adam"
    }
  },
  tier: "medium"
})

// Monitor progress
const status = await mcp__flow-nexus__neural_training_status({
  job_id: training.job_id
})
```

### Federated Learning for Privacy

```javascript
// Initialize federated cluster
const cluster = await mcp__flow-nexus__neural_cluster_init({
  name: "federated-medical-cluster",
  architecture: "transformer",
  topology: "mesh",
  consensus: "proof-of-learning",
  daaEnabled: true
})

// Deploy nodes across different locations
for (let i = 0; i < 5; i++) {
  await mcp__flow-nexus__neural_node_deploy({
    cluster_id: cluster.cluster_id,
    node_type: "worker",
    model: "large",
    autonomy: 0.9
  })
}

// Train with federated learning (data never leaves nodes)
await mcp__flow-nexus__neural_train_distributed({
  cluster_id: cluster.cluster_id,
  dataset: "medical_records_distributed",
  epochs: 200,
  federated: true,
  aggregation_rounds: 100
})
```

## Architecture Patterns

### Feedforward Networks
Best for: Classification, regression, simple pattern recognition
```javascript
{
  type: "feedforward",
  layers: [
    { type: "dense", units: 256, activation: "relu" },
    { type: "dropout", rate: 0.3 },
    { type: "dense", units: 128, activation: "relu" },
    { type: "dense", units: 10, activation: "softmax" }
  ]
}
```

### LSTM Networks
Best for: Time series, sequences, forecasting
```javascript
{
  type: "lstm",
  layers: [
    { type: "lstm", units: 128, return_sequences: true },
    { type: "lstm", units: 64 },
    { type: "dense", units: 1 }
  ]
}
```

### Transformers
Best for: NLP, attention mechanisms, large-scale text
```javascript
{
  type: "transformer",
  layers: [
    { type: "embedding", vocab_size: 10000, embedding_dim: 512 },
    { type: "transformer_encoder", num_heads: 8, ff_dim: 2048 },
    { type: "global_average_pooling" },
    { type: "dense", units: 2, activation: "softmax" }
  ]
}
```

### GANs
Best for: Generative tasks, image synthesis
```javascript
{
  type: "gan",
  generator_layers: [...],
  discriminator_layers: [...]
}
```

### Autoencoders
Best for: Dimensionality reduction, anomaly detection
```javascript
{
  type: "autoencoder",
  encoder_layers: [
    { type: "dense", units: 128, activation: "relu" },
    { type: "dense", units: 64, activation: "relu" }
  ],
  decoder_layers: [
    { type: "dense", units: 128, activation: "relu" },
    { type: "dense", units: input_dim, activation: "sigmoid" }
  ]
}
```

## Best Practices

1. **Start Small**: Begin with `nano` or `mini` tiers for experimentation
2. **Use Templates**: Leverage marketplace templates for common tasks
3. **Monitor Training**: Check status regularly to catch issues early
4. **Benchmark Models**: Always benchmark before production deployment
5. **Distributed Training**: Use clusters for large models (>1B parameters)
6. **Federated Learning**: Use for privacy-sensitive data
7. **Version Models**: Publish successful models as templates for reuse
8. **Validate Thoroughly**: Use validation workflows before deployment

## Troubleshooting

### Training Stalled
```javascript
// Check cluster status
const status = await mcp__flow-nexus__neural_cluster_status({
  cluster_id: "cluster_id"
})

// Terminate and restart if needed
await mcp__flow-nexus__neural_cluster_terminate({
  cluster_id: "cluster_id"
})
```

### Low Accuracy
- Increase epochs
- Adjust learning rate
- Add regularization (dropout)
- Try different optimizer
- Use data augmentation

### Out of Memory
- Reduce batch size
- Use smaller model tier
- Enable gradient accumulation
- Use distributed training

## Related Skills

- `flow-nexus-sandbox` - E2B sandbox management
- `flow-nexus-swarm` - AI swarm orchestration
- `flow-nexus-workflow` - Workflow automation

## Resources

- Flow Nexus Docs: https://flow-nexus.ruv.io/docs
- Neural Network Guide: https://flow-nexus.ruv.io/docs/neural
- Template Marketplace: https://flow-nexus.ruv.io/templates
- API Reference: https://flow-nexus.ruv.io/api

---

**Note**: Distributed training requires authentication. Register at https://flow-nexus.ruv.io or use `npx flow-nexus@latest register`.

Overview

This skill trains, deploys, and manages neural networks across distributed E2B sandboxes using Flow Nexus. It supports multiple architectures (feedforward, LSTM, GAN, autoencoder, transformer), single-node and distributed training, marketplace templates, and federated learning. Designed for production-ready experimentation and scaled model training in decentralized topologies.

How this skill works

You define model architecture and training parameters, choose a resource tier, and invoke training via the Flow Nexus MCP endpoints. For large workloads, initialize a distributed cluster, deploy worker/aggregator nodes, and run distributed or federated training with topology and consensus controls. The skill also exposes inference, template marketplace browsing and deployment, model management, benchmarking, and validation workflows.

When to use it

  • Train custom models quickly on a single sandbox for prototyping.
  • Scale training across multiple E2B sandboxes for large datasets or transformer-scale models.
  • Run federated training where data must remain on local nodes for privacy compliance.
  • Deploy pre-trained templates from the marketplace to accelerate application development.
  • Perform performance benchmarking and validation before publishing models.

Best practices

  • Start with a small tier (nano/mini) to validate architecture and hyperparameters before scaling up.
  • Use templates for common tasks (NLP, vision, time series) and fine-tune on your data to save time.
  • For distributed runs, test cluster topology and node roles on a small cluster to validate connectivity and aggregation logic.
  • Enable benchmarking and validation workflows to capture latency, throughput, and accuracy metrics before production deployment.
  • When using federated learning, set sensible aggregation rounds and minimum nodes per round to balance convergence and availability.

Example use cases

  • Image classification at scale: initialize a hierarchical CNN cluster, deploy workers, and train on a distributed image dataset.
  • NLP sentiment analysis: deploy a pre-trained transformer template, fine-tune with custom epochs, and serve inference endpoints.
  • Time series forecasting: train an LSTM on medium tier sandboxes and monitor training status for early stopping.
  • Privacy-preserving medical models: set up a federated cluster across locations and train with data never leaving local nodes.
  • Marketplace publishing: benchmark a high-accuracy model, validate robustness, and publish it as a template for others.

FAQ

What architectures are supported?

Supported architectures include feedforward, LSTM, transformer, GAN, and autoencoder, plus hybrid and CNN patterns for vision.

How do I start distributed training?

Initialize a cluster with cluster_init, deploy parameter server/worker/aggregator nodes, connect topology, then call train_distributed with dataset and training params.

Can I keep data local for privacy?

Yes. Enable federated:true during distributed training so data remains on local nodes and only model updates are aggregated.