home / skills / plurigrid / asi / catcolab-schemas
This skill helps you design clear CatColab schemas by separating entities from attributes and defining mappings for robust ACSets.
npx playbooks add skill plurigrid/asi --skill catcolab-schemasReview the files below or copy the command above to add this skill to your agents.
---
name: catcolab-schemas
description: CatColab Schemas - database schema modeling distinguishing entities (tables) from attributes (columns). Foundation for ACSets (Attributed C-Sets) and AlgebraicJulia data structures.
version: 1.0.0
---
# CatColab Schemas: Database Schema Modeling
**Trit**: +1 (PLUS - generator)
**Color**: Green (#32CD32)
## Overview
Schemas in CatColab upgrade ologs by explicitly distinguishing:
- **Entities**: Tables with identity (foreign key targets)
- **Attributes**: Columns/properties (data values)
- **Mappings**: Foreign key relationships
This is the foundation for **ACSets** (Attributed C-Sets), the core data structure of AlgebraicJulia.
## Mathematical Foundation
A schema is a **profunctor** or displayed category:
```
┌─────────────────────────────────────────────────────┐
│ SCHEMA │
├─────────────────────────────────────────────────────┤
│ Entities (Ob): │
│ Person, Company, Project │
│ │
│ AttrTypes (Data): │
│ String, Int, Date, Bool │
│ │
│ Mappings (Hom): │
│ works_at: Person → Company │
│ leads: Person → Project │
│ │
│ Attributes (Attr): │
│ name: Person → String │
│ age: Person → Int │
│ founded: Company → Date │
└─────────────────────────────────────────────────────┘
```
## Double Theory
```rust
// Schema double theory in catlog
pub fn th_schema() -> DiscreteDblTheory {
let mut cat = FpCategory::new();
// Object types
cat.add_ob_generator(name("Entity"));
cat.add_ob_generator(name("AttrType"));
// Morphism types
cat.add_mor_generator(name("Mapping"), name("Entity"), name("Entity"));
cat.add_mor_generator(name("Attr"), name("Entity"), name("AttrType"));
cat.into()
}
```
## CatColab Implementation
### Entity Declaration
```typescript
{
"type": "ObDecl",
"name": "Person",
"theory_type": "Entity",
"description": "people in the system"
}
```
### Attribute Type Declaration
```typescript
{
"type": "ObDecl",
"name": "String",
"theory_type": "AttrType",
"description": "text values"
}
```
### Mapping (Foreign Key)
```typescript
{
"type": "MorDecl",
"name": "employer",
"dom": "Person",
"cod": "Company",
"theory_type": "Mapping",
"description": "the company this person works for"
}
```
### Attribute (Column)
```typescript
{
"type": "MorDecl",
"name": "salary",
"dom": "Person",
"cod": "Int",
"theory_type": "Attr",
"description": "annual salary in dollars"
}
```
## ACSet Connection
A CatColab schema defines the type; an **ACSet** is an instance:
```julia
# Schema defines structure
@present SchPerson(FreeSchema) begin
Person::Ob
Company::Ob
employer::Hom(Person, Company)
Name::AttrType
name::Attr(Person, Name)
end
# ACSet populates data
people = @acset SchPerson begin
Person = 3
Company = 2
employer = [1, 1, 2]
name = ["Alice", "Bob", "Charlie"]
end
```
## Practical Examples
### Example 1: E-Commerce Schema
```
Entities: Customer, Order, Product, Category
AttrTypes: String, Int, Float, DateTime
Mappings:
placed_by: Order → Customer
contains: Order → Product (many-to-many via junction)
in_category: Product → Category
Attributes:
email: Customer → String
total: Order → Float
price: Product → Float
name: Category → String
```
### Example 2: Social Network
```
Entities: User, Post, Comment, Group
AttrTypes: String, DateTime, Int
Mappings:
author: Post → User
on_post: Comment → Post
member_of: User → Group
Attributes:
username: User → String
content: Post → String
timestamp: Post → DateTime
likes: Post → Int
```
## Schema Composition
Schemas compose via **pullback** and **pushout**:
```
Schema A Schema B
\ /
\ pullback /
\ /
▼ ▼
Schema A ×_C B
```
## GF(3) Triads
```
catcolab-ologs (-1) ⊗ topos-catcolab (0) ⊗ catcolab-schemas (+1) = 0 ✓
database-design (-1) ⊗ acsets-relational-thinking (0) ⊗ catcolab-schemas (+1) = 0 ✓
```
## Commands
```bash
# Create schema
just catcolab-new schema "my-database"
# Generate Julia ACSet code
just catcolab-export my-database --format=julia
# Create instance (diagram)
just catcolab-instance my-database "sample-data"
# Migrate schema
just catcolab-migrate old-schema new-schema
```
## References
- Patterson et al. "Categorical data structures for technical computing" (2022)
- [AlgebraicJulia ACSets](https://algebraicjulia.github.io/ACSets.jl/)
- [CatColab Schema Help](https://catcolab.org/help/logics/schema)
---
**Skill Name**: catcolab-schemas
**Type**: Database Schema Design
**Trit**: +1 (PLUS)
**GF(3)**: Conserved via triadic composition
This skill models database schemas by separating entities (tables) from attributes (columns) and explicit foreign-key mappings. It provides a formal foundation for Attributed C-Sets (ACSets) and interoperates with AlgebraicJulia data structures. The modeling approach is categorical, enabling composition, migration, and code generation for instances.
The skill expresses schemas as a displayed category/profunctor with generators for Entity objects, AttrType objects, Mapping morphisms (foreign keys), and Attr morphisms (attributes). It emits structured declarations (entities, attr types, mappings, attributes) and can generate ACSets-compatible code for instances. Composition operations like pullback and pushout let you combine or migrate schemas reliably.
Can I generate runnable ACSet code from a schema?
Yes. The skill exports schemas into AlgebraicJulia-compatible ACSet code and can produce instance templates you populate with data.
How are many-to-many relationships modeled?
Model many-to-many with an explicit junction Entity that maps to both sides via Mappings, or use pairwise relations and compose them via schema operations.