home / skills / microck / ordinary-claude-skills / data-viz-plots

data-viz-plots skill

/skills_all/data-viz-plots

This skill helps you generate publication-quality matplotlib and seaborn plots locally for any LLM provider, enabling reproducible visuals.

This is most likely a fork of the data-viz-plots skill from starlitnightly
npx playbooks add skill microck/ordinary-claude-skills --skill data-viz-plots

Review the files below or copy the command above to add this skill to your agents.

Files (2)
SKILL.md
14.7 KB
---
name: data-viz-plots
title: Data Visualization (Universal)
description: Create publication-quality plots and visualizations using matplotlib and seaborn. Works with ANY LLM provider (GPT, Gemini, Claude, etc.).
---

# Data Visualization (Universal)

## Overview
This skill enables you to create professional scientific visualizations including scatter plots, line charts, heatmaps, violin plots, and more. Unlike cloud-hosted solutions, this skill uses the **matplotlib** and **seaborn** Python libraries and executes **locally** in your environment, making it compatible with **ALL LLM providers** including GPT, Gemini, Claude, DeepSeek, and Qwen.

## When to Use This Skill
- Create publication-quality figures for papers and presentations
- Generate exploratory data analysis (EDA) plots
- Visualize gene expression, QC metrics, or clustering results
- Create multi-panel figures combining different plot types
- Export high-resolution images for reports
- Customize plot aesthetics (colors, fonts, styles)

## How to Use

### Step 1: Import Required Libraries
```python
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
from matplotlib import gridspec
import matplotlib.patches as mpatches

# Set style for publication-quality plots
sns.set_style("whitegrid")
plt.rcParams['figure.dpi'] = 150
plt.rcParams['savefig.dpi'] = 300
plt.rcParams['font.size'] = 10
```

### Step 2: Basic Scatter Plot
```python
# Create figure and axis
fig, ax = plt.subplots(figsize=(6, 5))

# Scatter plot
ax.scatter(x_data, y_data, s=20, alpha=0.6, c='steelblue', edgecolors='k', linewidths=0.5)

# Labels and title
ax.set_xlabel('Gene Expression (log2)', fontsize=12)
ax.set_ylabel('Cell Count', fontsize=12)
ax.set_title('Expression vs. Cell Count', fontsize=14, fontweight='bold')

# Grid and styling
ax.grid(alpha=0.3)
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)

# Save figure
plt.tight_layout()
plt.savefig('scatter_plot.png', dpi=300, bbox_inches='tight')
plt.show()
print("✅ Scatter plot saved to: scatter_plot.png")
```

### Step 3: Line Plot with Multiple Series
```python
fig, ax = plt.subplots(figsize=(8, 5))

# Plot multiple lines
ax.plot(time_points, group1_values, marker='o', label='Group 1', color='#E74C3C', linewidth=2)
ax.plot(time_points, group2_values, marker='s', label='Group 2', color='#3498DB', linewidth=2)
ax.plot(time_points, group3_values, marker='^', label='Group 3', color='#2ECC71', linewidth=2)

# Styling
ax.set_xlabel('Time Point', fontsize=12)
ax.set_ylabel('Expression Level', fontsize=12)
ax.set_title('Gene Expression Over Time', fontsize=14, fontweight='bold')
ax.legend(frameon=True, loc='best', fontsize=10)
ax.grid(alpha=0.3, linestyle='--')

plt.tight_layout()
plt.savefig('line_plot.png', dpi=300, bbox_inches='tight')
plt.show()
```

### Step 4: Box Plot and Violin Plot
```python
# Prepare data (long-form DataFrame)
# df should have columns: 'cluster', 'expression', 'gene', etc.

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))

# Box plot
sns.boxplot(data=df, x='cluster', y='expression', palette='Set2', ax=ax1)
ax1.set_title('Box Plot: Expression by Cluster', fontsize=12, fontweight='bold')
ax1.set_xlabel('Cluster', fontsize=11)
ax1.set_ylabel('Expression Level', fontsize=11)
ax1.tick_params(axis='x', rotation=45)

# Violin plot
sns.violinplot(data=df, x='cluster', y='expression', palette='muted', ax=ax2, inner='quartile')
ax2.set_title('Violin Plot: Expression Distribution', fontsize=12, fontweight='bold')
ax2.set_xlabel('Cluster', fontsize=11)
ax2.set_ylabel('Expression Level', fontsize=11)
ax2.tick_params(axis='x', rotation=45)

plt.tight_layout()
plt.savefig('box_violin_plot.png', dpi=300, bbox_inches='tight')
plt.show()
```

### Step 5: Heatmap
```python
# Prepare data matrix (rows=genes, columns=samples or clusters)
# gene_expression_matrix: pandas DataFrame or numpy array

fig, ax = plt.subplots(figsize=(8, 6))

# Create heatmap
sns.heatmap(
    gene_expression_matrix,
    cmap='viridis',
    cbar_kws={'label': 'Expression'},
    xticklabels=True,
    yticklabels=True,
    linewidths=0.5,
    linecolor='gray',
    ax=ax
)

ax.set_title('Gene Expression Heatmap', fontsize=14, fontweight='bold')
ax.set_xlabel('Samples', fontsize=12)
ax.set_ylabel('Genes', fontsize=12)

plt.tight_layout()
plt.savefig('heatmap.png', dpi=300, bbox_inches='tight')
plt.show()
```

### Step 6: Bar Plot with Error Bars
```python
fig, ax = plt.subplots(figsize=(7, 5))

# Data
categories = ['Cluster 0', 'Cluster 1', 'Cluster 2', 'Cluster 3']
means = [120, 85, 200, 150]
errors = [15, 10, 25, 20]

# Bar plot
bars = ax.bar(categories, means, yerr=errors, capsize=5,
               color=['#E74C3C', '#3498DB', '#2ECC71', '#F39C12'],
               edgecolor='black', linewidth=1.2, alpha=0.8)

# Labels
ax.set_ylabel('Cell Count', fontsize=12)
ax.set_title('Cell Counts by Cluster', fontsize=14, fontweight='bold')
ax.set_ylim(0, max(means) * 1.3)

# Add value labels on bars
for bar, mean in zip(bars, means):
    height = bar.get_height()
    ax.text(bar.get_x() + bar.get_width()/2., height + 5,
            f'{mean}', ha='center', va='bottom', fontsize=10)

plt.tight_layout()
plt.savefig('bar_plot.png', dpi=300, bbox_inches='tight')
plt.show()
```

## Advanced Features

### Multi-Panel Figure
```python
# Create complex layout
fig = plt.figure(figsize=(12, 8))
gs = gridspec.GridSpec(2, 3, figure=fig, hspace=0.3, wspace=0.3)

# Panel A: Scatter
ax1 = fig.add_subplot(gs[0, :2])
ax1.scatter(x_data, y_data, c=cluster_labels, cmap='tab10', s=10, alpha=0.6)
ax1.set_title('A. UMAP Projection', fontsize=12, fontweight='bold', loc='left')
ax1.set_xlabel('UMAP1')
ax1.set_ylabel('UMAP2')

# Panel B: Violin
ax2 = fig.add_subplot(gs[0, 2])
sns.violinplot(data=df, y='expression', palette='Set2', ax=ax2)
ax2.set_title('B. Expression', fontsize=12, fontweight='bold', loc='left')

# Panel C: Heatmap
ax3 = fig.add_subplot(gs[1, :])
sns.heatmap(matrix, cmap='coolwarm', center=0, ax=ax3, cbar_kws={'label': 'Z-score'})
ax3.set_title('C. Gene Expression Heatmap', fontsize=12, fontweight='bold', loc='left')

plt.savefig('multi_panel_figure.png', dpi=300, bbox_inches='tight')
plt.show()
```

### Custom Color Palette
```python
# Define custom colors
custom_palette = ['#E74C3C', '#3498DB', '#2ECC71', '#F39C12', '#9B59B6']

# Use in seaborn
sns.set_palette(custom_palette)

# Or create color dict for specific mapping
color_dict = {
    'T cells': '#E74C3C',
    'B cells': '#3498DB',
    'Monocytes': '#2ECC71',
    'NK cells': '#F39C12'
}

# Use in scatter plot
for cell_type, color in color_dict.items():
    mask = df['celltype'] == cell_type
    ax.scatter(df.loc[mask, 'x'], df.loc[mask, 'y'],
               c=color, label=cell_type, s=20, alpha=0.7)
ax.legend()
```

### Density Plot
```python
from scipy.stats import gaussian_kde

fig, ax = plt.subplots(figsize=(8, 6))

# Calculate density
xy = np.vstack([x_data, y_data])
z = gaussian_kde(xy)(xy)

# Sort points by density for better visualization
idx = z.argsort()
x, y, z = x_data[idx], y_data[idx], z[idx]

# Scatter with density colors
scatter = ax.scatter(x, y, c=z, s=20, cmap='viridis', alpha=0.6, edgecolors='none')
plt.colorbar(scatter, ax=ax, label='Density')

ax.set_xlabel('UMAP1', fontsize=12)
ax.set_ylabel('UMAP2', fontsize=12)
ax.set_title('Density Scatter Plot', fontsize=14, fontweight='bold')

plt.tight_layout()
plt.savefig('density_plot.png', dpi=300, bbox_inches='tight')
plt.show()
```

## Common Use Cases

### QC Metrics Visualization
```python
# Assuming adata.obs has QC columns: n_genes, n_counts, percent_mito

fig, axes = plt.subplots(1, 3, figsize=(15, 4))

# Plot 1: Histogram of genes per cell
axes[0].hist(adata.obs['n_genes'], bins=50, color='steelblue', edgecolor='black', alpha=0.7)
axes[0].axvline(adata.obs['n_genes'].median(), color='red', linestyle='--', label='Median')
axes[0].set_xlabel('Genes per Cell', fontsize=11)
axes[0].set_ylabel('Frequency', fontsize=11)
axes[0].set_title('Genes per Cell Distribution', fontsize=12, fontweight='bold')
axes[0].legend()

# Plot 2: Scatter UMI vs Genes
axes[1].scatter(adata.obs['n_counts'], adata.obs['n_genes'],
                s=5, alpha=0.5, c='coral')
axes[1].set_xlabel('UMI Counts', fontsize=11)
axes[1].set_ylabel('Genes Detected', fontsize=11)
axes[1].set_title('UMIs vs Genes', fontsize=12, fontweight='bold')

# Plot 3: Violin plot of mitochondrial percentage
sns.violinplot(y=adata.obs['percent_mito'], ax=axes[2], color='lightgreen')
axes[2].axhline(y=20, color='red', linestyle='--', label='20% threshold')
axes[2].set_ylabel('Mitochondrial %', fontsize=11)
axes[2].set_title('Mitochondrial Content', fontsize=12, fontweight='bold')
axes[2].legend()

plt.tight_layout()
plt.savefig('qc_metrics.png', dpi=300, bbox_inches='tight')
plt.show()
```

### UMAP/tSNE Visualization
```python
# Assuming adata.obsm['X_umap'] exists and adata.obs['clusters'] exists

fig, ax = plt.subplots(figsize=(8, 7))

# Get unique clusters
clusters = adata.obs['clusters'].unique()
n_clusters = len(clusters)

# Generate colors
colors = plt.cm.tab20(np.linspace(0, 1, n_clusters))

# Plot each cluster
for i, cluster in enumerate(clusters):
    mask = adata.obs['clusters'] == cluster
    ax.scatter(
        adata.obsm['X_umap'][mask, 0],
        adata.obsm['X_umap'][mask, 1],
        c=[colors[i]],
        label=f'Cluster {cluster}',
        s=10,
        alpha=0.7,
        edgecolors='none'
    )

ax.set_xlabel('UMAP1', fontsize=12)
ax.set_ylabel('UMAP2', fontsize=12)
ax.set_title('UMAP Projection by Cluster', fontsize=14, fontweight='bold')
ax.legend(bbox_to_anchor=(1.05, 1), loc='upper left', frameon=True, fontsize=9)

plt.tight_layout()
plt.savefig('umap_clusters.png', dpi=300, bbox_inches='tight')
plt.show()
```

### Gene Expression Dot Plot
```python
# genes: list of gene names
# clusters: list of cluster IDs
# Create matrix: rows=genes, columns=clusters with mean expression and % expressing

fig, ax = plt.subplots(figsize=(10, 6))

# Prepare data
from matplotlib.colors import Normalize

# dot_size_matrix: % cells expressing (0-100)
# color_matrix: mean expression level

for i, gene in enumerate(genes):
    for j, cluster in enumerate(clusters):
        # Size proportional to % expressing
        size = dot_size_matrix[i, j] * 5  # Scale factor
        # Color by expression level
        color_val = color_matrix[i, j]

        ax.scatter(j, i, s=size, c=[color_val], cmap='Reds',
                   vmin=0, vmax=color_matrix.max(),
                   edgecolors='black', linewidths=0.5)

# Labels
ax.set_xticks(range(len(clusters)))
ax.set_xticklabels(clusters, rotation=45, ha='right')
ax.set_yticks(range(len(genes)))
ax.set_yticklabels(genes)
ax.set_xlabel('Cluster', fontsize=12)
ax.set_ylabel('Gene', fontsize=12)
ax.set_title('Marker Gene Expression', fontsize=14, fontweight='bold')

# Colorbar
norm = Normalize(vmin=0, vmax=color_matrix.max())
sm = plt.cm.ScalarMappable(cmap='Reds', norm=norm)
sm.set_array([])
cbar = plt.colorbar(sm, ax=ax, pad=0.02)
cbar.set_label('Mean Expression', rotation=270, labelpad=15)

plt.tight_layout()
plt.savefig('gene_dotplot.png', dpi=300, bbox_inches='tight')
plt.show()
```

### Volcano Plot (DEG Analysis)
```python
# Assuming deg_df has columns: gene, log2FC, pvalue

fig, ax = plt.subplots(figsize=(8, 7))

# Calculate -log10(pvalue)
deg_df['-log10_pvalue'] = -np.log10(deg_df['pvalue'])

# Classify genes
deg_df['significant'] = 'Not Significant'
deg_df.loc[(deg_df['log2FC'] > 1) & (deg_df['pvalue'] < 0.05), 'significant'] = 'Up-regulated'
deg_df.loc[(deg_df['log2FC'] < -1) & (deg_df['pvalue'] < 0.05), 'significant'] = 'Down-regulated'

# Plot
for category, color in zip(['Not Significant', 'Up-regulated', 'Down-regulated'],
                            ['gray', 'red', 'blue']):
    mask = deg_df['significant'] == category
    ax.scatter(deg_df.loc[mask, 'log2FC'],
               deg_df.loc[mask, '-log10_pvalue'],
               c=color, label=category, s=20, alpha=0.6, edgecolors='none')

# Threshold lines
ax.axvline(x=1, color='black', linestyle='--', linewidth=1, alpha=0.5)
ax.axvline(x=-1, color='black', linestyle='--', linewidth=1, alpha=0.5)
ax.axhline(y=-np.log10(0.05), color='black', linestyle='--', linewidth=1, alpha=0.5)

# Labels
ax.set_xlabel('log2 Fold Change', fontsize=12)
ax.set_ylabel('-log10(p-value)', fontsize=12)
ax.set_title('Volcano Plot: Differential Expression', fontsize=14, fontweight='bold')
ax.legend(frameon=True, loc='upper right')

plt.tight_layout()
plt.savefig('volcano_plot.png', dpi=300, bbox_inches='tight')
plt.show()
```

## Best Practices

1. **Figure Size**: Use appropriate dimensions for target medium (papers: 6-8 inches wide, posters: larger)
2. **DPI**: Save at 300 DPI for publications, 150 DPI for presentations
3. **Colors**: Use colorblind-friendly palettes (e.g., `viridis`, `Set2`, `tab10`)
4. **Fonts**: Keep font sizes readable (titles: 12-14pt, labels: 10-12pt, ticks: 8-10pt)
5. **Transparency**: Use alpha for overlapping points to show density
6. **Layout**: Always call `plt.tight_layout()` before saving to prevent label clipping
7. **File Format**: PNG for general use, SVG for vector graphics (editable in Illustrator)
8. **Close Figures**: Call `plt.close()` after saving to free memory when generating many plots

## Troubleshooting

### Issue: "Figure too cluttered with many points"
**Solution**: Use transparency and smaller point sizes
```python
ax.scatter(x, y, s=5, alpha=0.3, edgecolors='none')
```

### Issue: "Legend overlaps with data"
**Solution**: Place legend outside the plot area
```python
ax.legend(bbox_to_anchor=(1.05, 1), loc='upper left')
```

### Issue: "Labels are cut off in saved figure"
**Solution**: Use `bbox_inches='tight'`
```python
plt.savefig('plot.png', dpi=300, bbox_inches='tight')
```

### Issue: "Colors don't match between plots"
**Solution**: Define color palette once and reuse
```python
PALETTE = {'Group A': '#E74C3C', 'Group B': '#3498DB'}
# Use PALETTE in all plots
```

### Issue: "Heatmap text too small"
**Solution**: Adjust figure size or font size
```python
fig, ax = plt.subplots(figsize=(12, 10))
sns.heatmap(data, ax=ax, annot_kws={'fontsize': 8})
```

## Technical Notes

- **Libraries**: Uses `matplotlib` and `seaborn` (widely supported, stable)
- **Execution**: Runs locally in the agent's sandbox
- **Compatibility**: Works with ALL LLM providers (GPT, Gemini, Claude, DeepSeek, Qwen, etc.)
- **File Formats**: Supports PNG, PDF, SVG, JPEG
- **Performance**: Typical plot generation takes <1 second for standard plots, 2-5 seconds for complex multi-panel figures
- **Memory**: Keep figure count reasonable; close figures after saving if generating many plots

## References
- Matplotlib documentation: https://matplotlib.org/stable/contents.html
- Seaborn documentation: https://seaborn.pydata.org/
- Matplotlib gallery: https://matplotlib.org/stable/gallery/index.html
- Seaborn gallery: https://seaborn.pydata.org/examples/index.html

Overview

This skill creates publication-quality plots and visualizations using matplotlib and seaborn, running locally so it works with any LLM provider. It supports scatter, line, violin, box, heatmap, density, bar, UMAP/tSNE, volcano, and multi-panel figures with customizable palettes and export settings. The focus is on reproducible, high-resolution figures suitable for papers, presentations, and EDA.

How this skill works

The skill provides reusable code patterns and templates that load data into pandas/numpy, configure matplotlib/seaborn styles, and draw common scientific plots. It handles figure sizing, DPI, color palettes, legends, annotations, and saving with tight layouts so outputs are ready for publication. Advanced recipes show multi-panel layouts, custom color mapping, density coloring, and dot/volcano plot construction for differential expression results.

When to use it

  • Prepare figures for manuscripts, posters, or slide decks
  • Perform exploratory data analysis (EDA) and QC visualization
  • Visualize single-cell results: UMAP/tSNE, cluster markers, heatmaps
  • Create multi-panel figures combining different plot types
  • Export high-resolution images (PNG/SVG) for publication or editing

Best practices

  • Set style and rcParams once (dpi, font sizes, style) to ensure consistency
  • Choose colorblind-friendly palettes (viridis, Set2, tab10) and reuse a defined palette dict
  • Save at 300 DPI for publications and prefer SVG for vector editing
  • Use alpha and smaller marker sizes for dense scatter plots to reveal structure
  • Call plt.tight_layout() and bbox_inches='tight' before saving; plt.close() after saving when generating many figures

Example use cases

  • Scatter or density UMAP plots colored by cluster or cell type for single-cell analysis
  • Multi-panel figure combining UMAP, violin/box plots and a heatmap for a manuscript figure
  • Volcano plot highlighting DEGs with threshold lines and category coloring
  • Gene expression dot plot showing mean expression and percent-expressing per cluster
  • QC metrics panel: histogram of genes per cell, UMI vs genes scatter, and mitochondrial content violin

FAQ

Do I need an internet connection or cloud account to run this skill?

No. All plotting runs locally using matplotlib and seaborn; no cloud account is required.

Which formats and DPI are recommended for publication?

Save raster images at 300 DPI for journals and use SVG for vector graphics if you need editable output.