home / skills / starlitnightly / omicverse / data-viz-plots
This skill helps you generate publication-quality matplotlib and seaborn visualizations for bioinformatics data, supporting multi-panel layouts and
npx playbooks add skill starlitnightly/omicverse --skill data-viz-plotsReview the files below or copy the command above to add this skill to your agents.
---
name: data-viz-plots
title: Data Visualization (Universal)
description: Create publication-quality plots and visualizations using matplotlib and seaborn. Works with ANY LLM provider (GPT, Gemini, Claude, etc.).
---
# Data Visualization (Universal)
## Overview
This skill enables you to create professional scientific visualizations including scatter plots, line charts, heatmaps, violin plots, and more. Unlike cloud-hosted solutions, this skill uses the **matplotlib** and **seaborn** Python libraries and executes **locally** in your environment, making it compatible with **ALL LLM providers** including GPT, Gemini, Claude, DeepSeek, and Qwen.
## When to Use This Skill
- Create publication-quality figures for papers and presentations
- Generate exploratory data analysis (EDA) plots
- Visualize gene expression, QC metrics, or clustering results
- Create multi-panel figures combining different plot types
- Export high-resolution images for reports
- Customize plot aesthetics (colors, fonts, styles)
## How to Use
### Step 1: Import Required Libraries
```python
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
from matplotlib import gridspec
import matplotlib.patches as mpatches
# Set style for publication-quality plots
sns.set_style("whitegrid")
plt.rcParams['figure.dpi'] = 150
plt.rcParams['savefig.dpi'] = 300
plt.rcParams['font.size'] = 10
```
### Step 2: Basic Scatter Plot
```python
# Create figure and axis
fig, ax = plt.subplots(figsize=(6, 5))
# Scatter plot
ax.scatter(x_data, y_data, s=20, alpha=0.6, c='steelblue', edgecolors='k', linewidths=0.5)
# Labels and title
ax.set_xlabel('Gene Expression (log2)', fontsize=12)
ax.set_ylabel('Cell Count', fontsize=12)
ax.set_title('Expression vs. Cell Count', fontsize=14, fontweight='bold')
# Grid and styling
ax.grid(alpha=0.3)
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
# Save figure
plt.tight_layout()
plt.savefig('scatter_plot.png', dpi=300, bbox_inches='tight')
plt.show()
print("✅ Scatter plot saved to: scatter_plot.png")
```
### Step 3: Line Plot with Multiple Series
```python
fig, ax = plt.subplots(figsize=(8, 5))
# Plot multiple lines
ax.plot(time_points, group1_values, marker='o', label='Group 1', color='#E74C3C', linewidth=2)
ax.plot(time_points, group2_values, marker='s', label='Group 2', color='#3498DB', linewidth=2)
ax.plot(time_points, group3_values, marker='^', label='Group 3', color='#2ECC71', linewidth=2)
# Styling
ax.set_xlabel('Time Point', fontsize=12)
ax.set_ylabel('Expression Level', fontsize=12)
ax.set_title('Gene Expression Over Time', fontsize=14, fontweight='bold')
ax.legend(frameon=True, loc='best', fontsize=10)
ax.grid(alpha=0.3, linestyle='--')
plt.tight_layout()
plt.savefig('line_plot.png', dpi=300, bbox_inches='tight')
plt.show()
```
### Step 4: Box Plot and Violin Plot
```python
# Prepare data (long-form DataFrame)
# df should have columns: 'cluster', 'expression', 'gene', etc.
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))
# Box plot
sns.boxplot(data=df, x='cluster', y='expression', palette='Set2', ax=ax1)
ax1.set_title('Box Plot: Expression by Cluster', fontsize=12, fontweight='bold')
ax1.set_xlabel('Cluster', fontsize=11)
ax1.set_ylabel('Expression Level', fontsize=11)
ax1.tick_params(axis='x', rotation=45)
# Violin plot
sns.violinplot(data=df, x='cluster', y='expression', palette='muted', ax=ax2, inner='quartile')
ax2.set_title('Violin Plot: Expression Distribution', fontsize=12, fontweight='bold')
ax2.set_xlabel('Cluster', fontsize=11)
ax2.set_ylabel('Expression Level', fontsize=11)
ax2.tick_params(axis='x', rotation=45)
plt.tight_layout()
plt.savefig('box_violin_plot.png', dpi=300, bbox_inches='tight')
plt.show()
```
### Step 5: Heatmap
```python
# Prepare data matrix (rows=genes, columns=samples or clusters)
# gene_expression_matrix: pandas DataFrame or numpy array
fig, ax = plt.subplots(figsize=(8, 6))
# Create heatmap
sns.heatmap(
gene_expression_matrix,
cmap='viridis',
cbar_kws={'label': 'Expression'},
xticklabels=True,
yticklabels=True,
linewidths=0.5,
linecolor='gray',
ax=ax
)
ax.set_title('Gene Expression Heatmap', fontsize=14, fontweight='bold')
ax.set_xlabel('Samples', fontsize=12)
ax.set_ylabel('Genes', fontsize=12)
plt.tight_layout()
plt.savefig('heatmap.png', dpi=300, bbox_inches='tight')
plt.show()
```
### Step 6: Bar Plot with Error Bars
```python
fig, ax = plt.subplots(figsize=(7, 5))
# Data
categories = ['Cluster 0', 'Cluster 1', 'Cluster 2', 'Cluster 3']
means = [120, 85, 200, 150]
errors = [15, 10, 25, 20]
# Bar plot
bars = ax.bar(categories, means, yerr=errors, capsize=5,
color=['#E74C3C', '#3498DB', '#2ECC71', '#F39C12'],
edgecolor='black', linewidth=1.2, alpha=0.8)
# Labels
ax.set_ylabel('Cell Count', fontsize=12)
ax.set_title('Cell Counts by Cluster', fontsize=14, fontweight='bold')
ax.set_ylim(0, max(means) * 1.3)
# Add value labels on bars
for bar, mean in zip(bars, means):
height = bar.get_height()
ax.text(bar.get_x() + bar.get_width()/2., height + 5,
f'{mean}', ha='center', va='bottom', fontsize=10)
plt.tight_layout()
plt.savefig('bar_plot.png', dpi=300, bbox_inches='tight')
plt.show()
```
## Advanced Features
### Multi-Panel Figure
```python
# Create complex layout
fig = plt.figure(figsize=(12, 8))
gs = gridspec.GridSpec(2, 3, figure=fig, hspace=0.3, wspace=0.3)
# Panel A: Scatter
ax1 = fig.add_subplot(gs[0, :2])
ax1.scatter(x_data, y_data, c=cluster_labels, cmap='tab10', s=10, alpha=0.6)
ax1.set_title('A. UMAP Projection', fontsize=12, fontweight='bold', loc='left')
ax1.set_xlabel('UMAP1')
ax1.set_ylabel('UMAP2')
# Panel B: Violin
ax2 = fig.add_subplot(gs[0, 2])
sns.violinplot(data=df, y='expression', palette='Set2', ax=ax2)
ax2.set_title('B. Expression', fontsize=12, fontweight='bold', loc='left')
# Panel C: Heatmap
ax3 = fig.add_subplot(gs[1, :])
sns.heatmap(matrix, cmap='coolwarm', center=0, ax=ax3, cbar_kws={'label': 'Z-score'})
ax3.set_title('C. Gene Expression Heatmap', fontsize=12, fontweight='bold', loc='left')
plt.savefig('multi_panel_figure.png', dpi=300, bbox_inches='tight')
plt.show()
```
### Custom Color Palette
```python
# Define custom colors
custom_palette = ['#E74C3C', '#3498DB', '#2ECC71', '#F39C12', '#9B59B6']
# Use in seaborn
sns.set_palette(custom_palette)
# Or create color dict for specific mapping
color_dict = {
'T cells': '#E74C3C',
'B cells': '#3498DB',
'Monocytes': '#2ECC71',
'NK cells': '#F39C12'
}
# Use in scatter plot
for cell_type, color in color_dict.items():
mask = df['celltype'] == cell_type
ax.scatter(df.loc[mask, 'x'], df.loc[mask, 'y'],
c=color, label=cell_type, s=20, alpha=0.7)
ax.legend()
```
### Density Plot
```python
from scipy.stats import gaussian_kde
fig, ax = plt.subplots(figsize=(8, 6))
# Calculate density
xy = np.vstack([x_data, y_data])
z = gaussian_kde(xy)(xy)
# Sort points by density for better visualization
idx = z.argsort()
x, y, z = x_data[idx], y_data[idx], z[idx]
# Scatter with density colors
scatter = ax.scatter(x, y, c=z, s=20, cmap='viridis', alpha=0.6, edgecolors='none')
plt.colorbar(scatter, ax=ax, label='Density')
ax.set_xlabel('UMAP1', fontsize=12)
ax.set_ylabel('UMAP2', fontsize=12)
ax.set_title('Density Scatter Plot', fontsize=14, fontweight='bold')
plt.tight_layout()
plt.savefig('density_plot.png', dpi=300, bbox_inches='tight')
plt.show()
```
## Common Use Cases
### QC Metrics Visualization
```python
# Assuming adata.obs has QC columns: n_genes, n_counts, percent_mito
fig, axes = plt.subplots(1, 3, figsize=(15, 4))
# Plot 1: Histogram of genes per cell
axes[0].hist(adata.obs['n_genes'], bins=50, color='steelblue', edgecolor='black', alpha=0.7)
axes[0].axvline(adata.obs['n_genes'].median(), color='red', linestyle='--', label='Median')
axes[0].set_xlabel('Genes per Cell', fontsize=11)
axes[0].set_ylabel('Frequency', fontsize=11)
axes[0].set_title('Genes per Cell Distribution', fontsize=12, fontweight='bold')
axes[0].legend()
# Plot 2: Scatter UMI vs Genes
axes[1].scatter(adata.obs['n_counts'], adata.obs['n_genes'],
s=5, alpha=0.5, c='coral')
axes[1].set_xlabel('UMI Counts', fontsize=11)
axes[1].set_ylabel('Genes Detected', fontsize=11)
axes[1].set_title('UMIs vs Genes', fontsize=12, fontweight='bold')
# Plot 3: Violin plot of mitochondrial percentage
sns.violinplot(y=adata.obs['percent_mito'], ax=axes[2], color='lightgreen')
axes[2].axhline(y=20, color='red', linestyle='--', label='20% threshold')
axes[2].set_ylabel('Mitochondrial %', fontsize=11)
axes[2].set_title('Mitochondrial Content', fontsize=12, fontweight='bold')
axes[2].legend()
plt.tight_layout()
plt.savefig('qc_metrics.png', dpi=300, bbox_inches='tight')
plt.show()
```
### UMAP/tSNE Visualization
```python
# Assuming adata.obsm['X_umap'] exists and adata.obs['clusters'] exists
fig, ax = plt.subplots(figsize=(8, 7))
# Get unique clusters
clusters = adata.obs['clusters'].unique()
n_clusters = len(clusters)
# Generate colors
colors = plt.cm.tab20(np.linspace(0, 1, n_clusters))
# Plot each cluster
for i, cluster in enumerate(clusters):
mask = adata.obs['clusters'] == cluster
ax.scatter(
adata.obsm['X_umap'][mask, 0],
adata.obsm['X_umap'][mask, 1],
c=[colors[i]],
label=f'Cluster {cluster}',
s=10,
alpha=0.7,
edgecolors='none'
)
ax.set_xlabel('UMAP1', fontsize=12)
ax.set_ylabel('UMAP2', fontsize=12)
ax.set_title('UMAP Projection by Cluster', fontsize=14, fontweight='bold')
ax.legend(bbox_to_anchor=(1.05, 1), loc='upper left', frameon=True, fontsize=9)
plt.tight_layout()
plt.savefig('umap_clusters.png', dpi=300, bbox_inches='tight')
plt.show()
```
### Gene Expression Dot Plot
```python
# genes: list of gene names
# clusters: list of cluster IDs
# Create matrix: rows=genes, columns=clusters with mean expression and % expressing
fig, ax = plt.subplots(figsize=(10, 6))
# Prepare data
from matplotlib.colors import Normalize
# dot_size_matrix: % cells expressing (0-100)
# color_matrix: mean expression level
for i, gene in enumerate(genes):
for j, cluster in enumerate(clusters):
# Size proportional to % expressing
size = dot_size_matrix[i, j] * 5 # Scale factor
# Color by expression level
color_val = color_matrix[i, j]
ax.scatter(j, i, s=size, c=[color_val], cmap='Reds',
vmin=0, vmax=color_matrix.max(),
edgecolors='black', linewidths=0.5)
# Labels
ax.set_xticks(range(len(clusters)))
ax.set_xticklabels(clusters, rotation=45, ha='right')
ax.set_yticks(range(len(genes)))
ax.set_yticklabels(genes)
ax.set_xlabel('Cluster', fontsize=12)
ax.set_ylabel('Gene', fontsize=12)
ax.set_title('Marker Gene Expression', fontsize=14, fontweight='bold')
# Colorbar
norm = Normalize(vmin=0, vmax=color_matrix.max())
sm = plt.cm.ScalarMappable(cmap='Reds', norm=norm)
sm.set_array([])
cbar = plt.colorbar(sm, ax=ax, pad=0.02)
cbar.set_label('Mean Expression', rotation=270, labelpad=15)
plt.tight_layout()
plt.savefig('gene_dotplot.png', dpi=300, bbox_inches='tight')
plt.show()
```
### Volcano Plot (DEG Analysis)
```python
# Assuming deg_df has columns: gene, log2FC, pvalue
fig, ax = plt.subplots(figsize=(8, 7))
# Calculate -log10(pvalue)
deg_df['-log10_pvalue'] = -np.log10(deg_df['pvalue'])
# Classify genes
deg_df['significant'] = 'Not Significant'
deg_df.loc[(deg_df['log2FC'] > 1) & (deg_df['pvalue'] < 0.05), 'significant'] = 'Up-regulated'
deg_df.loc[(deg_df['log2FC'] < -1) & (deg_df['pvalue'] < 0.05), 'significant'] = 'Down-regulated'
# Plot
for category, color in zip(['Not Significant', 'Up-regulated', 'Down-regulated'],
['gray', 'red', 'blue']):
mask = deg_df['significant'] == category
ax.scatter(deg_df.loc[mask, 'log2FC'],
deg_df.loc[mask, '-log10_pvalue'],
c=color, label=category, s=20, alpha=0.6, edgecolors='none')
# Threshold lines
ax.axvline(x=1, color='black', linestyle='--', linewidth=1, alpha=0.5)
ax.axvline(x=-1, color='black', linestyle='--', linewidth=1, alpha=0.5)
ax.axhline(y=-np.log10(0.05), color='black', linestyle='--', linewidth=1, alpha=0.5)
# Labels
ax.set_xlabel('log2 Fold Change', fontsize=12)
ax.set_ylabel('-log10(p-value)', fontsize=12)
ax.set_title('Volcano Plot: Differential Expression', fontsize=14, fontweight='bold')
ax.legend(frameon=True, loc='upper right')
plt.tight_layout()
plt.savefig('volcano_plot.png', dpi=300, bbox_inches='tight')
plt.show()
```
## Best Practices
1. **Figure Size**: Use appropriate dimensions for target medium (papers: 6-8 inches wide, posters: larger)
2. **DPI**: Save at 300 DPI for publications, 150 DPI for presentations
3. **Colors**: Use colorblind-friendly palettes (e.g., `viridis`, `Set2`, `tab10`)
4. **Fonts**: Keep font sizes readable (titles: 12-14pt, labels: 10-12pt, ticks: 8-10pt)
5. **Transparency**: Use alpha for overlapping points to show density
6. **Layout**: Always call `plt.tight_layout()` before saving to prevent label clipping
7. **File Format**: PNG for general use, SVG for vector graphics (editable in Illustrator)
8. **Close Figures**: Call `plt.close()` after saving to free memory when generating many plots
## Troubleshooting
### Issue: "Figure too cluttered with many points"
**Solution**: Use transparency and smaller point sizes
```python
ax.scatter(x, y, s=5, alpha=0.3, edgecolors='none')
```
### Issue: "Legend overlaps with data"
**Solution**: Place legend outside the plot area
```python
ax.legend(bbox_to_anchor=(1.05, 1), loc='upper left')
```
### Issue: "Labels are cut off in saved figure"
**Solution**: Use `bbox_inches='tight'`
```python
plt.savefig('plot.png', dpi=300, bbox_inches='tight')
```
### Issue: "Colors don't match between plots"
**Solution**: Define color palette once and reuse
```python
PALETTE = {'Group A': '#E74C3C', 'Group B': '#3498DB'}
# Use PALETTE in all plots
```
### Issue: "Heatmap text too small"
**Solution**: Adjust figure size or font size
```python
fig, ax = plt.subplots(figsize=(12, 10))
sns.heatmap(data, ax=ax, annot_kws={'fontsize': 8})
```
## Technical Notes
- **Libraries**: Uses `matplotlib` and `seaborn` (widely supported, stable)
- **Execution**: Runs locally in the agent's sandbox
- **Compatibility**: Works with ALL LLM providers (GPT, Gemini, Claude, DeepSeek, Qwen, etc.)
- **File Formats**: Supports PNG, PDF, SVG, JPEG
- **Performance**: Typical plot generation takes <1 second for standard plots, 2-5 seconds for complex multi-panel figures
- **Memory**: Keep figure count reasonable; close figures after saving if generating many plots
## References
- Matplotlib documentation: https://matplotlib.org/stable/contents.html
- Seaborn documentation: https://seaborn.pydata.org/
- Matplotlib gallery: https://matplotlib.org/stable/gallery/index.html
- Seaborn gallery: https://seaborn.pydata.org/examples/index.html
This skill creates publication-quality scientific visualizations using matplotlib and seaborn, executed locally in your environment. It supports common plot types for multi-omics workflows—scatter, heatmap, violin/box, UMAP/tSNE, dot plots, volcano plots and multi-panel figures—and works with any LLM provider. The emphasis is on reproducible, high-resolution figures ready for papers, posters, and presentations.
The skill provides ready-to-run plotting patterns and snippets that accept pandas DataFrames, numpy arrays, or AnnData objects and render figures with consistent styling. It sets sensible defaults for DPI, fonts, palettes and layout, offers utilities for multi-panel layouts and custom color mapping, and includes export commands to save high-resolution PNG/SVG files. Troubleshooting tips and density/aggregation approaches help with large, noisy datasets.
Does this require cloud services or a specific LLM provider?
No. All plotting runs locally with matplotlib and seaborn and is compatible with any LLM provider for code generation or guidance.
What input formats are supported?
Common inputs are pandas DataFrames, numpy arrays, and AnnData objects (for single-cell workflows). Functions expect long-form or matrix-form where appropriate.
How do I handle very large point clouds?
Reduce marker size, increase transparency (alpha), use density plots (gaussian_kde) or downsampling to reveal structure without clutter.