home / skills / davila7 / claude-code-templates / prompt-engineering-guidance

prompt-engineering-guidance skill

/cli-tool/components/skills/ai-research/prompt-engineering-guidance

This skill helps you enforce structured outputs and safe generation with constrained grammars and workflows, improving reliability across JSON, XML, and code.

This is most likely a fork of the guidance skill from orchestra-research
npx playbooks add skill davila7/claude-code-templates --skill prompt-engineering-guidance

Review the files below or copy the command above to add this skill to your agents.

Files (4)
SKILL.md
14.2 KB
---
name: guidance
description: Control LLM output with regex and grammars, guarantee valid JSON/XML/code generation, enforce structured formats, and build multi-step workflows with Guidance - Microsoft Research's constrained generation framework
version: 1.0.0
author: Orchestra Research
license: MIT
tags: [Prompt Engineering, Guidance, Constrained Generation, Structured Output, JSON Validation, Grammar, Microsoft Research, Format Enforcement, Multi-Step Workflows]
dependencies: [guidance, transformers]
---

# Guidance: Constrained LLM Generation

## When to Use This Skill

Use Guidance when you need to:
- **Control LLM output syntax** with regex or grammars
- **Guarantee valid JSON/XML/code** generation
- **Reduce latency** vs traditional prompting approaches
- **Enforce structured formats** (dates, emails, IDs, etc.)
- **Build multi-step workflows** with Pythonic control flow
- **Prevent invalid outputs** through grammatical constraints

**GitHub Stars**: 18,000+ | **From**: Microsoft Research

## Installation

```bash
# Base installation
pip install guidance

# With specific backends
pip install guidance[transformers]  # Hugging Face models
pip install guidance[llama_cpp]     # llama.cpp models
```

## Quick Start

### Basic Example: Structured Generation

```python
from guidance import models, gen

# Load model (supports OpenAI, Transformers, llama.cpp)
lm = models.OpenAI("gpt-4")

# Generate with constraints
result = lm + "The capital of France is " + gen("capital", max_tokens=5)

print(result["capital"])  # "Paris"
```

### With Anthropic Claude

```python
from guidance import models, gen, system, user, assistant

# Configure Claude
lm = models.Anthropic("claude-sonnet-4-5-20250929")

# Use context managers for chat format
with system():
    lm += "You are a helpful assistant."

with user():
    lm += "What is the capital of France?"

with assistant():
    lm += gen(max_tokens=20)
```

## Core Concepts

### 1. Context Managers

Guidance uses Pythonic context managers for chat-style interactions.

```python
from guidance import system, user, assistant, gen

lm = models.Anthropic("claude-sonnet-4-5-20250929")

# System message
with system():
    lm += "You are a JSON generation expert."

# User message
with user():
    lm += "Generate a person object with name and age."

# Assistant response
with assistant():
    lm += gen("response", max_tokens=100)

print(lm["response"])
```

**Benefits:**
- Natural chat flow
- Clear role separation
- Easy to read and maintain

### 2. Constrained Generation

Guidance ensures outputs match specified patterns using regex or grammars.

#### Regex Constraints

```python
from guidance import models, gen

lm = models.Anthropic("claude-sonnet-4-5-20250929")

# Constrain to valid email format
lm += "Email: " + gen("email", regex=r"[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}")

# Constrain to date format (YYYY-MM-DD)
lm += "Date: " + gen("date", regex=r"\d{4}-\d{2}-\d{2}")

# Constrain to phone number
lm += "Phone: " + gen("phone", regex=r"\d{3}-\d{3}-\d{4}")

print(lm["email"])  # Guaranteed valid email
print(lm["date"])   # Guaranteed YYYY-MM-DD format
```

**How it works:**
- Regex converted to grammar at token level
- Invalid tokens filtered during generation
- Model can only produce matching outputs

#### Selection Constraints

```python
from guidance import models, gen, select

lm = models.Anthropic("claude-sonnet-4-5-20250929")

# Constrain to specific choices
lm += "Sentiment: " + select(["positive", "negative", "neutral"], name="sentiment")

# Multiple-choice selection
lm += "Best answer: " + select(
    ["A) Paris", "B) London", "C) Berlin", "D) Madrid"],
    name="answer"
)

print(lm["sentiment"])  # One of: positive, negative, neutral
print(lm["answer"])     # One of: A, B, C, or D
```

### 3. Token Healing

Guidance automatically "heals" token boundaries between prompt and generation.

**Problem:** Tokenization creates unnatural boundaries.

```python
# Without token healing
prompt = "The capital of France is "
# Last token: " is "
# First generated token might be " Par" (with leading space)
# Result: "The capital of France is  Paris" (double space!)
```

**Solution:** Guidance backs up one token and regenerates.

```python
from guidance import models, gen

lm = models.Anthropic("claude-sonnet-4-5-20250929")

# Token healing enabled by default
lm += "The capital of France is " + gen("capital", max_tokens=5)
# Result: "The capital of France is Paris" (correct spacing)
```

**Benefits:**
- Natural text boundaries
- No awkward spacing issues
- Better model performance (sees natural token sequences)

### 4. Grammar-Based Generation

Define complex structures using context-free grammars.

```python
from guidance import models, gen

lm = models.Anthropic("claude-sonnet-4-5-20250929")

# JSON grammar (simplified)
json_grammar = """
{
    "name": <gen name regex="[A-Za-z ]+" max_tokens=20>,
    "age": <gen age regex="[0-9]+" max_tokens=3>,
    "email": <gen email regex="[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\\.[a-zA-Z]{2,}" max_tokens=50>
}
"""

# Generate valid JSON
lm += gen("person", grammar=json_grammar)

print(lm["person"])  # Guaranteed valid JSON structure
```

**Use cases:**
- Complex structured outputs
- Nested data structures
- Programming language syntax
- Domain-specific languages

### 5. Guidance Functions

Create reusable generation patterns with the `@guidance` decorator.

```python
from guidance import guidance, gen, models

@guidance
def generate_person(lm):
    """Generate a person with name and age."""
    lm += "Name: " + gen("name", max_tokens=20, stop="\n")
    lm += "\nAge: " + gen("age", regex=r"[0-9]+", max_tokens=3)
    return lm

# Use the function
lm = models.Anthropic("claude-sonnet-4-5-20250929")
lm = generate_person(lm)

print(lm["name"])
print(lm["age"])
```

**Stateful Functions:**

```python
@guidance(stateless=False)
def react_agent(lm, question, tools, max_rounds=5):
    """ReAct agent with tool use."""
    lm += f"Question: {question}\n\n"

    for i in range(max_rounds):
        # Thought
        lm += f"Thought {i+1}: " + gen("thought", stop="\n")

        # Action
        lm += "\nAction: " + select(list(tools.keys()), name="action")

        # Execute tool
        tool_result = tools[lm["action"]]()
        lm += f"\nObservation: {tool_result}\n\n"

        # Check if done
        lm += "Done? " + select(["Yes", "No"], name="done")
        if lm["done"] == "Yes":
            break

    # Final answer
    lm += "\nFinal Answer: " + gen("answer", max_tokens=100)
    return lm
```

## Backend Configuration

### Anthropic Claude

```python
from guidance import models

lm = models.Anthropic(
    model="claude-sonnet-4-5-20250929",
    api_key="your-api-key"  # Or set ANTHROPIC_API_KEY env var
)
```

### OpenAI

```python
lm = models.OpenAI(
    model="gpt-4o-mini",
    api_key="your-api-key"  # Or set OPENAI_API_KEY env var
)
```

### Local Models (Transformers)

```python
from guidance.models import Transformers

lm = Transformers(
    "microsoft/Phi-4-mini-instruct",
    device="cuda"  # Or "cpu"
)
```

### Local Models (llama.cpp)

```python
from guidance.models import LlamaCpp

lm = LlamaCpp(
    model_path="/path/to/model.gguf",
    n_ctx=4096,
    n_gpu_layers=35
)
```

## Common Patterns

### Pattern 1: JSON Generation

```python
from guidance import models, gen, system, user, assistant

lm = models.Anthropic("claude-sonnet-4-5-20250929")

with system():
    lm += "You generate valid JSON."

with user():
    lm += "Generate a user profile with name, age, and email."

with assistant():
    lm += """{
    "name": """ + gen("name", regex=r'"[A-Za-z ]+"', max_tokens=30) + """,
    "age": """ + gen("age", regex=r"[0-9]+", max_tokens=3) + """,
    "email": """ + gen("email", regex=r'"[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}"', max_tokens=50) + """
}"""

print(lm)  # Valid JSON guaranteed
```

### Pattern 2: Classification

```python
from guidance import models, gen, select

lm = models.Anthropic("claude-sonnet-4-5-20250929")

text = "This product is amazing! I love it."

lm += f"Text: {text}\n"
lm += "Sentiment: " + select(["positive", "negative", "neutral"], name="sentiment")
lm += "\nConfidence: " + gen("confidence", regex=r"[0-9]+", max_tokens=3) + "%"

print(f"Sentiment: {lm['sentiment']}")
print(f"Confidence: {lm['confidence']}%")
```

### Pattern 3: Multi-Step Reasoning

```python
from guidance import models, gen, guidance

@guidance
def chain_of_thought(lm, question):
    """Generate answer with step-by-step reasoning."""
    lm += f"Question: {question}\n\n"

    # Generate multiple reasoning steps
    for i in range(3):
        lm += f"Step {i+1}: " + gen(f"step_{i+1}", stop="\n", max_tokens=100) + "\n"

    # Final answer
    lm += "\nTherefore, the answer is: " + gen("answer", max_tokens=50)

    return lm

lm = models.Anthropic("claude-sonnet-4-5-20250929")
lm = chain_of_thought(lm, "What is 15% of 200?")

print(lm["answer"])
```

### Pattern 4: ReAct Agent

```python
from guidance import models, gen, select, guidance

@guidance(stateless=False)
def react_agent(lm, question):
    """ReAct agent with tool use."""
    tools = {
        "calculator": lambda expr: eval(expr),
        "search": lambda query: f"Search results for: {query}",
    }

    lm += f"Question: {question}\n\n"

    for round in range(5):
        # Thought
        lm += f"Thought: " + gen("thought", stop="\n") + "\n"

        # Action selection
        lm += "Action: " + select(["calculator", "search", "answer"], name="action")

        if lm["action"] == "answer":
            lm += "\nFinal Answer: " + gen("answer", max_tokens=100)
            break

        # Action input
        lm += "\nAction Input: " + gen("action_input", stop="\n") + "\n"

        # Execute tool
        if lm["action"] in tools:
            result = tools[lm["action"]](lm["action_input"])
            lm += f"Observation: {result}\n\n"

    return lm

lm = models.Anthropic("claude-sonnet-4-5-20250929")
lm = react_agent(lm, "What is 25 * 4 + 10?")
print(lm["answer"])
```

### Pattern 5: Data Extraction

```python
from guidance import models, gen, guidance

@guidance
def extract_entities(lm, text):
    """Extract structured entities from text."""
    lm += f"Text: {text}\n\n"

    # Extract person
    lm += "Person: " + gen("person", stop="\n", max_tokens=30) + "\n"

    # Extract organization
    lm += "Organization: " + gen("organization", stop="\n", max_tokens=30) + "\n"

    # Extract date
    lm += "Date: " + gen("date", regex=r"\d{4}-\d{2}-\d{2}", max_tokens=10) + "\n"

    # Extract location
    lm += "Location: " + gen("location", stop="\n", max_tokens=30) + "\n"

    return lm

text = "Tim Cook announced at Apple Park on 2024-09-15 in Cupertino."

lm = models.Anthropic("claude-sonnet-4-5-20250929")
lm = extract_entities(lm, text)

print(f"Person: {lm['person']}")
print(f"Organization: {lm['organization']}")
print(f"Date: {lm['date']}")
print(f"Location: {lm['location']}")
```

## Best Practices

### 1. Use Regex for Format Validation

```python
# ✅ Good: Regex ensures valid format
lm += "Email: " + gen("email", regex=r"[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}")

# ❌ Bad: Free generation may produce invalid emails
lm += "Email: " + gen("email", max_tokens=50)
```

### 2. Use select() for Fixed Categories

```python
# ✅ Good: Guaranteed valid category
lm += "Status: " + select(["pending", "approved", "rejected"], name="status")

# ❌ Bad: May generate typos or invalid values
lm += "Status: " + gen("status", max_tokens=20)
```

### 3. Leverage Token Healing

```python
# Token healing is enabled by default
# No special action needed - just concatenate naturally
lm += "The capital is " + gen("capital")  # Automatic healing
```

### 4. Use stop Sequences

```python
# ✅ Good: Stop at newline for single-line outputs
lm += "Name: " + gen("name", stop="\n")

# ❌ Bad: May generate multiple lines
lm += "Name: " + gen("name", max_tokens=50)
```

### 5. Create Reusable Functions

```python
# ✅ Good: Reusable pattern
@guidance
def generate_person(lm):
    lm += "Name: " + gen("name", stop="\n")
    lm += "\nAge: " + gen("age", regex=r"[0-9]+")
    return lm

# Use multiple times
lm = generate_person(lm)
lm += "\n\n"
lm = generate_person(lm)
```

### 6. Balance Constraints

```python
# ✅ Good: Reasonable constraints
lm += gen("name", regex=r"[A-Za-z ]+", max_tokens=30)

# ❌ Too strict: May fail or be very slow
lm += gen("name", regex=r"^(John|Jane)$", max_tokens=10)
```

## Comparison to Alternatives

| Feature | Guidance | Instructor | Outlines | LMQL |
|---------|----------|------------|----------|------|
| Regex Constraints | ✅ Yes | ❌ No | ✅ Yes | ✅ Yes |
| Grammar Support | ✅ CFG | ❌ No | ✅ CFG | ✅ CFG |
| Pydantic Validation | ❌ No | ✅ Yes | ✅ Yes | ❌ No |
| Token Healing | ✅ Yes | ❌ No | ✅ Yes | ❌ No |
| Local Models | ✅ Yes | ⚠️ Limited | ✅ Yes | ✅ Yes |
| API Models | ✅ Yes | ✅ Yes | ⚠️ Limited | ✅ Yes |
| Pythonic Syntax | ✅ Yes | ✅ Yes | ✅ Yes | ❌ SQL-like |
| Learning Curve | Low | Low | Medium | High |

**When to choose Guidance:**
- Need regex/grammar constraints
- Want token healing
- Building complex workflows with control flow
- Using local models (Transformers, llama.cpp)
- Prefer Pythonic syntax

**When to choose alternatives:**
- Instructor: Need Pydantic validation with automatic retrying
- Outlines: Need JSON schema validation
- LMQL: Prefer declarative query syntax

## Performance Characteristics

**Latency Reduction:**
- 30-50% faster than traditional prompting for constrained outputs
- Token healing reduces unnecessary regeneration
- Grammar constraints prevent invalid token generation

**Memory Usage:**
- Minimal overhead vs unconstrained generation
- Grammar compilation cached after first use
- Efficient token filtering at inference time

**Token Efficiency:**
- Prevents wasted tokens on invalid outputs
- No need for retry loops
- Direct path to valid outputs

## Resources

- **Documentation**: https://guidance.readthedocs.io
- **GitHub**: https://github.com/guidance-ai/guidance (18k+ stars)
- **Notebooks**: https://github.com/guidance-ai/guidance/tree/main/notebooks
- **Discord**: Community support available

## See Also

- `references/constraints.md` - Comprehensive regex and grammar patterns
- `references/backends.md` - Backend-specific configuration
- `references/examples.md` - Production-ready examples


Overview

This skill controls LLM output with regex, grammars, selections, and Pythonic workflows using the Guidance framework from Microsoft Research. It guarantees valid JSON/XML/code, enforces structured formats, and reduces latency compared with naive prompt-and-retry approaches. It supports Anthropic Claude, OpenAI, and local backends (Transformers, llama.cpp).

How this skill works

It converts regex and CFG constraints into token-level grammars and filters invalid tokens during generation so the model can only emit valid outputs. Context managers and a @guidance decorator provide Pythonic chat flow and reusable generation functions. Token healing handles boundary artifacts and multi-step control flow (loops, tool calls, selects) lets you build stateful agents and deterministic extraction pipelines.

When to use it

  • You must guarantee valid JSON, XML, or code output
  • You need strict format validation (dates, emails, IDs) via regex or grammars
  • You want multi-step workflows or ReAct-style agents with tool calls
  • You run models locally (Transformers or llama.cpp) or use Anthropic/OpenAI backends
  • You want to reduce latency and avoid retry loops for constrained outputs
  • You need token-boundary correctness to avoid spacing/tokenization bugs

Best practices

  • Prefer regex or select() for fixed-format fields to ensure validity
  • Use grammar-based generation for nested or complex structured outputs
  • Enable stop sequences for one-line fields to avoid multiline noise
  • Balance constraint strictness—overly tight regex can fail or slow generation
  • Factor repeated patterns into @guidance functions for reuse and maintainability
  • Rely on token healing by concatenating prompts naturally rather than inserting manual fixes

Example use cases

  • Generate guaranteed-valid JSON user profiles (name, age, email) for downstream ingestion
  • Extract structured entities from text with fixed-date formats and normalized locations
  • Build ReAct agents that call tools, observe results, and decide when to stop
  • Produce code snippets or DSL output that must match a grammar or compile
  • Create classification pipelines that return one of a fixed set of labels with numeric confidence

FAQ

Which backends are supported?

Anthropic Claude, OpenAI, local Transformers, and llama.cpp are supported via adapters; configuration is provided by the models module.

How does token healing affect prompts?

Token healing backs up token boundaries automatically so concatenation produces natural spacing and avoids duplicated or malformed tokens.