home / skills / orchestra-research / ai-research-skills / guidance

guidance skill

/16-prompt-engineering/guidance

This skill helps you enforce structured generation with regex and grammars, guaranteeing valid JSON/XML/code and guiding multi-step workflows.

npx playbooks add skill orchestra-research/ai-research-skills --skill guidance

Review the files below or copy the command above to add this skill to your agents.

Files (4)
SKILL.md
14.2 KB
---
name: guidance
description: Control LLM output with regex and grammars, guarantee valid JSON/XML/code generation, enforce structured formats, and build multi-step workflows with Guidance - Microsoft Research's constrained generation framework
version: 1.0.0
author: Orchestra Research
license: MIT
tags: [Prompt Engineering, Guidance, Constrained Generation, Structured Output, JSON Validation, Grammar, Microsoft Research, Format Enforcement, Multi-Step Workflows]
dependencies: [guidance, transformers]
---

# Guidance: Constrained LLM Generation

## When to Use This Skill

Use Guidance when you need to:
- **Control LLM output syntax** with regex or grammars
- **Guarantee valid JSON/XML/code** generation
- **Reduce latency** vs traditional prompting approaches
- **Enforce structured formats** (dates, emails, IDs, etc.)
- **Build multi-step workflows** with Pythonic control flow
- **Prevent invalid outputs** through grammatical constraints

**GitHub Stars**: 18,000+ | **From**: Microsoft Research

## Installation

```bash
# Base installation
pip install guidance

# With specific backends
pip install guidance[transformers]  # Hugging Face models
pip install guidance[llama_cpp]     # llama.cpp models
```

## Quick Start

### Basic Example: Structured Generation

```python
from guidance import models, gen

# Load model (supports OpenAI, Transformers, llama.cpp)
lm = models.OpenAI("gpt-4")

# Generate with constraints
result = lm + "The capital of France is " + gen("capital", max_tokens=5)

print(result["capital"])  # "Paris"
```

### With Anthropic Claude

```python
from guidance import models, gen, system, user, assistant

# Configure Claude
lm = models.Anthropic("claude-sonnet-4-5-20250929")

# Use context managers for chat format
with system():
    lm += "You are a helpful assistant."

with user():
    lm += "What is the capital of France?"

with assistant():
    lm += gen(max_tokens=20)
```

## Core Concepts

### 1. Context Managers

Guidance uses Pythonic context managers for chat-style interactions.

```python
from guidance import system, user, assistant, gen

lm = models.Anthropic("claude-sonnet-4-5-20250929")

# System message
with system():
    lm += "You are a JSON generation expert."

# User message
with user():
    lm += "Generate a person object with name and age."

# Assistant response
with assistant():
    lm += gen("response", max_tokens=100)

print(lm["response"])
```

**Benefits:**
- Natural chat flow
- Clear role separation
- Easy to read and maintain

### 2. Constrained Generation

Guidance ensures outputs match specified patterns using regex or grammars.

#### Regex Constraints

```python
from guidance import models, gen

lm = models.Anthropic("claude-sonnet-4-5-20250929")

# Constrain to valid email format
lm += "Email: " + gen("email", regex=r"[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}")

# Constrain to date format (YYYY-MM-DD)
lm += "Date: " + gen("date", regex=r"\d{4}-\d{2}-\d{2}")

# Constrain to phone number
lm += "Phone: " + gen("phone", regex=r"\d{3}-\d{3}-\d{4}")

print(lm["email"])  # Guaranteed valid email
print(lm["date"])   # Guaranteed YYYY-MM-DD format
```

**How it works:**
- Regex converted to grammar at token level
- Invalid tokens filtered during generation
- Model can only produce matching outputs

#### Selection Constraints

```python
from guidance import models, gen, select

lm = models.Anthropic("claude-sonnet-4-5-20250929")

# Constrain to specific choices
lm += "Sentiment: " + select(["positive", "negative", "neutral"], name="sentiment")

# Multiple-choice selection
lm += "Best answer: " + select(
    ["A) Paris", "B) London", "C) Berlin", "D) Madrid"],
    name="answer"
)

print(lm["sentiment"])  # One of: positive, negative, neutral
print(lm["answer"])     # One of: A, B, C, or D
```

### 3. Token Healing

Guidance automatically "heals" token boundaries between prompt and generation.

**Problem:** Tokenization creates unnatural boundaries.

```python
# Without token healing
prompt = "The capital of France is "
# Last token: " is "
# First generated token might be " Par" (with leading space)
# Result: "The capital of France is  Paris" (double space!)
```

**Solution:** Guidance backs up one token and regenerates.

```python
from guidance import models, gen

lm = models.Anthropic("claude-sonnet-4-5-20250929")

# Token healing enabled by default
lm += "The capital of France is " + gen("capital", max_tokens=5)
# Result: "The capital of France is Paris" (correct spacing)
```

**Benefits:**
- Natural text boundaries
- No awkward spacing issues
- Better model performance (sees natural token sequences)

### 4. Grammar-Based Generation

Define complex structures using context-free grammars.

```python
from guidance import models, gen

lm = models.Anthropic("claude-sonnet-4-5-20250929")

# JSON grammar (simplified)
json_grammar = """
{
    "name": <gen name regex="[A-Za-z ]+" max_tokens=20>,
    "age": <gen age regex="[0-9]+" max_tokens=3>,
    "email": <gen email regex="[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\\.[a-zA-Z]{2,}" max_tokens=50>
}
"""

# Generate valid JSON
lm += gen("person", grammar=json_grammar)

print(lm["person"])  # Guaranteed valid JSON structure
```

**Use cases:**
- Complex structured outputs
- Nested data structures
- Programming language syntax
- Domain-specific languages

### 5. Guidance Functions

Create reusable generation patterns with the `@guidance` decorator.

```python
from guidance import guidance, gen, models

@guidance
def generate_person(lm):
    """Generate a person with name and age."""
    lm += "Name: " + gen("name", max_tokens=20, stop="\n")
    lm += "\nAge: " + gen("age", regex=r"[0-9]+", max_tokens=3)
    return lm

# Use the function
lm = models.Anthropic("claude-sonnet-4-5-20250929")
lm = generate_person(lm)

print(lm["name"])
print(lm["age"])
```

**Stateful Functions:**

```python
@guidance(stateless=False)
def react_agent(lm, question, tools, max_rounds=5):
    """ReAct agent with tool use."""
    lm += f"Question: {question}\n\n"

    for i in range(max_rounds):
        # Thought
        lm += f"Thought {i+1}: " + gen("thought", stop="\n")

        # Action
        lm += "\nAction: " + select(list(tools.keys()), name="action")

        # Execute tool
        tool_result = tools[lm["action"]]()
        lm += f"\nObservation: {tool_result}\n\n"

        # Check if done
        lm += "Done? " + select(["Yes", "No"], name="done")
        if lm["done"] == "Yes":
            break

    # Final answer
    lm += "\nFinal Answer: " + gen("answer", max_tokens=100)
    return lm
```

## Backend Configuration

### Anthropic Claude

```python
from guidance import models

lm = models.Anthropic(
    model="claude-sonnet-4-5-20250929",
    api_key="your-api-key"  # Or set ANTHROPIC_API_KEY env var
)
```

### OpenAI

```python
lm = models.OpenAI(
    model="gpt-4o-mini",
    api_key="your-api-key"  # Or set OPENAI_API_KEY env var
)
```

### Local Models (Transformers)

```python
from guidance.models import Transformers

lm = Transformers(
    "microsoft/Phi-4-mini-instruct",
    device="cuda"  # Or "cpu"
)
```

### Local Models (llama.cpp)

```python
from guidance.models import LlamaCpp

lm = LlamaCpp(
    model_path="/path/to/model.gguf",
    n_ctx=4096,
    n_gpu_layers=35
)
```

## Common Patterns

### Pattern 1: JSON Generation

```python
from guidance import models, gen, system, user, assistant

lm = models.Anthropic("claude-sonnet-4-5-20250929")

with system():
    lm += "You generate valid JSON."

with user():
    lm += "Generate a user profile with name, age, and email."

with assistant():
    lm += """{
    "name": """ + gen("name", regex=r'"[A-Za-z ]+"', max_tokens=30) + """,
    "age": """ + gen("age", regex=r"[0-9]+", max_tokens=3) + """,
    "email": """ + gen("email", regex=r'"[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}"', max_tokens=50) + """
}"""

print(lm)  # Valid JSON guaranteed
```

### Pattern 2: Classification

```python
from guidance import models, gen, select

lm = models.Anthropic("claude-sonnet-4-5-20250929")

text = "This product is amazing! I love it."

lm += f"Text: {text}\n"
lm += "Sentiment: " + select(["positive", "negative", "neutral"], name="sentiment")
lm += "\nConfidence: " + gen("confidence", regex=r"[0-9]+", max_tokens=3) + "%"

print(f"Sentiment: {lm['sentiment']}")
print(f"Confidence: {lm['confidence']}%")
```

### Pattern 3: Multi-Step Reasoning

```python
from guidance import models, gen, guidance

@guidance
def chain_of_thought(lm, question):
    """Generate answer with step-by-step reasoning."""
    lm += f"Question: {question}\n\n"

    # Generate multiple reasoning steps
    for i in range(3):
        lm += f"Step {i+1}: " + gen(f"step_{i+1}", stop="\n", max_tokens=100) + "\n"

    # Final answer
    lm += "\nTherefore, the answer is: " + gen("answer", max_tokens=50)

    return lm

lm = models.Anthropic("claude-sonnet-4-5-20250929")
lm = chain_of_thought(lm, "What is 15% of 200?")

print(lm["answer"])
```

### Pattern 4: ReAct Agent

```python
from guidance import models, gen, select, guidance

@guidance(stateless=False)
def react_agent(lm, question):
    """ReAct agent with tool use."""
    tools = {
        "calculator": lambda expr: eval(expr),
        "search": lambda query: f"Search results for: {query}",
    }

    lm += f"Question: {question}\n\n"

    for round in range(5):
        # Thought
        lm += f"Thought: " + gen("thought", stop="\n") + "\n"

        # Action selection
        lm += "Action: " + select(["calculator", "search", "answer"], name="action")

        if lm["action"] == "answer":
            lm += "\nFinal Answer: " + gen("answer", max_tokens=100)
            break

        # Action input
        lm += "\nAction Input: " + gen("action_input", stop="\n") + "\n"

        # Execute tool
        if lm["action"] in tools:
            result = tools[lm["action"]](lm["action_input"])
            lm += f"Observation: {result}\n\n"

    return lm

lm = models.Anthropic("claude-sonnet-4-5-20250929")
lm = react_agent(lm, "What is 25 * 4 + 10?")
print(lm["answer"])
```

### Pattern 5: Data Extraction

```python
from guidance import models, gen, guidance

@guidance
def extract_entities(lm, text):
    """Extract structured entities from text."""
    lm += f"Text: {text}\n\n"

    # Extract person
    lm += "Person: " + gen("person", stop="\n", max_tokens=30) + "\n"

    # Extract organization
    lm += "Organization: " + gen("organization", stop="\n", max_tokens=30) + "\n"

    # Extract date
    lm += "Date: " + gen("date", regex=r"\d{4}-\d{2}-\d{2}", max_tokens=10) + "\n"

    # Extract location
    lm += "Location: " + gen("location", stop="\n", max_tokens=30) + "\n"

    return lm

text = "Tim Cook announced at Apple Park on 2024-09-15 in Cupertino."

lm = models.Anthropic("claude-sonnet-4-5-20250929")
lm = extract_entities(lm, text)

print(f"Person: {lm['person']}")
print(f"Organization: {lm['organization']}")
print(f"Date: {lm['date']}")
print(f"Location: {lm['location']}")
```

## Best Practices

### 1. Use Regex for Format Validation

```python
# ✅ Good: Regex ensures valid format
lm += "Email: " + gen("email", regex=r"[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}")

# ❌ Bad: Free generation may produce invalid emails
lm += "Email: " + gen("email", max_tokens=50)
```

### 2. Use select() for Fixed Categories

```python
# ✅ Good: Guaranteed valid category
lm += "Status: " + select(["pending", "approved", "rejected"], name="status")

# ❌ Bad: May generate typos or invalid values
lm += "Status: " + gen("status", max_tokens=20)
```

### 3. Leverage Token Healing

```python
# Token healing is enabled by default
# No special action needed - just concatenate naturally
lm += "The capital is " + gen("capital")  # Automatic healing
```

### 4. Use stop Sequences

```python
# ✅ Good: Stop at newline for single-line outputs
lm += "Name: " + gen("name", stop="\n")

# ❌ Bad: May generate multiple lines
lm += "Name: " + gen("name", max_tokens=50)
```

### 5. Create Reusable Functions

```python
# ✅ Good: Reusable pattern
@guidance
def generate_person(lm):
    lm += "Name: " + gen("name", stop="\n")
    lm += "\nAge: " + gen("age", regex=r"[0-9]+")
    return lm

# Use multiple times
lm = generate_person(lm)
lm += "\n\n"
lm = generate_person(lm)
```

### 6. Balance Constraints

```python
# ✅ Good: Reasonable constraints
lm += gen("name", regex=r"[A-Za-z ]+", max_tokens=30)

# ❌ Too strict: May fail or be very slow
lm += gen("name", regex=r"^(John|Jane)$", max_tokens=10)
```

## Comparison to Alternatives

| Feature | Guidance | Instructor | Outlines | LMQL |
|---------|----------|------------|----------|------|
| Regex Constraints | ✅ Yes | ❌ No | ✅ Yes | ✅ Yes |
| Grammar Support | ✅ CFG | ❌ No | ✅ CFG | ✅ CFG |
| Pydantic Validation | ❌ No | ✅ Yes | ✅ Yes | ❌ No |
| Token Healing | ✅ Yes | ❌ No | ✅ Yes | ❌ No |
| Local Models | ✅ Yes | ⚠️ Limited | ✅ Yes | ✅ Yes |
| API Models | ✅ Yes | ✅ Yes | ⚠️ Limited | ✅ Yes |
| Pythonic Syntax | ✅ Yes | ✅ Yes | ✅ Yes | ❌ SQL-like |
| Learning Curve | Low | Low | Medium | High |

**When to choose Guidance:**
- Need regex/grammar constraints
- Want token healing
- Building complex workflows with control flow
- Using local models (Transformers, llama.cpp)
- Prefer Pythonic syntax

**When to choose alternatives:**
- Instructor: Need Pydantic validation with automatic retrying
- Outlines: Need JSON schema validation
- LMQL: Prefer declarative query syntax

## Performance Characteristics

**Latency Reduction:**
- 30-50% faster than traditional prompting for constrained outputs
- Token healing reduces unnecessary regeneration
- Grammar constraints prevent invalid token generation

**Memory Usage:**
- Minimal overhead vs unconstrained generation
- Grammar compilation cached after first use
- Efficient token filtering at inference time

**Token Efficiency:**
- Prevents wasted tokens on invalid outputs
- No need for retry loops
- Direct path to valid outputs

## Resources

- **Documentation**: https://guidance.readthedocs.io
- **GitHub**: https://github.com/guidance-ai/guidance (18k+ stars)
- **Notebooks**: https://github.com/guidance-ai/guidance/tree/main/notebooks
- **Discord**: Community support available

## See Also

- `references/constraints.md` - Comprehensive regex and grammar patterns
- `references/backends.md` - Backend-specific configuration
- `references/examples.md` - Production-ready examples


Overview

This skill controls LLM output using regex, grammars, and Pythonic workflows to guarantee valid JSON, XML, or code generation. It provides token-level constraints, token healing, and reusable guidance functions so agents produce structured, predictable outputs. Designed for both API and local models, it reduces latency and invalid outputs for production pipelines.

How this skill works

The skill wraps model calls with context managers and generation primitives (gen, select) that convert regex and grammars into token-level constraints. During inference, invalid tokens are filtered and token healing adjusts token boundaries to avoid spacing issues. You can define CFG grammars, selection lists, and stateful @guidance functions to build multi-step, tool-enabled workflows that return guaranteed formats.

When to use it

  • When you must guarantee valid JSON, XML, or code from an LLM
  • When enforcing strict formats (dates, emails, IDs) via regex or grammars
  • When building multi-step or tool-using agents with predictable state
  • When reducing retries and latency for constrained outputs
  • When running on local models (Transformers, llama.cpp) or API models

Best practices

  • Prefer regex constraints for format validation rather than free generation to avoid invalid outputs
  • Use select() for fixed-choice fields to eliminate typos and ambiguous labels
  • Leverage stop sequences for single-line captures and max_tokens to bound outputs
  • Create reusable @guidance functions for patterns like person generation or extraction
  • Balance constraint strictness: too-strict regex can fail or slow generation; prefer reasonable patterns

Example use cases

  • Generate valid JSON user profiles guaranteed to parse downstream
  • Extract structured entities (person, organization, ISO dates) from messy text
  • Implement ReAct-style agents that call tools and maintain state across rounds
  • Constrain code output to specific grammar fragments or programming language syntax
  • Perform reliable classification with fixed-choice outputs and numeric confidence

FAQ

Which models does this work with?

It supports API models (OpenAI, Anthropic) and local backends (Transformers, llama.cpp) via provided model adapters.

How does token healing help?

Token healing backs up token boundaries between prompt and generation so outputs avoid spacing/tokenization artifacts and appear natural without extra post-processing.