home / skills / zpankz / mcp-skillset / ontolog
This skill enables universal holarchic reasoning over simplicial complexes, applying lambda calculus and persistent topology to extract scalable,
npx playbooks add skill zpankz/mcp-skillset --skill ontologReview the files below or copy the command above to add this skill to your agents.
---
name: ontolog
description: "Holarchic reasoning framework implementing λ-calculus over simplicial complexes. Entities (ο) transform through operations (λ) toward terminals (τ) via the universal form λο.τ. Persistent homology captures multi-scale structure; sheaf theory ensures local-to-global consistency. Use when knowledge requires: (1) homoiconic self-reference where structure mirrors content, (2) scale-invariant holonic decomposition, (3) topological invariants preserved across transformations, or (4) formal Lex-style axiom systems over property graphs."
---
# OntoLog
<purpose>
Universal reasoning over holarchic structures where every part is simultaneously a whole. Implements symbolic λ-calculus primitives (ο, λ, τ) over simplicial complexes with persistent homology for multi-scale analysis and Lex axioms for formal constraint satisfaction.
</purpose>
<lambda_calculus_core>
```
PRIMITIVES
──────────
ο (omicron) : Base — The grounded entity, input variable
τ (tau) : Terminal — The target purpose, output variable
λ (lambda) : Operation — The transformation, abstraction
UNIVERSAL FORM
──────────────
λο.τ : Base → Terminal
COMPOSITION
───────────
(λ₁ ∘ λ₂)ο = λ₁(λ₂(ο)) — Sequential composition
λ₁ ⊗ λ₂ = λο.(λ₁ο, λ₂ο) — Parallel composition
λ* = fix(λ) — Recursive fixpoint
```
</lambda_calculus_core>
<execution_dag>
```mermaid
graph LR
Q[Query] --> S[Simplicial Encoding]
S --> H[Homology Analysis]
H --> L[λ-Resolution]
L --> T[τ-Targeting]
T --> F[Filtration]
F --> O[Output]
subgraph Topological
H -.- PH[Persistent Homology]
H -.- SL[Sheaf Laplacian]
end
subgraph Lambda
L -.- LR[λ-Registry]
T -.- TR[τ-Registry]
end
```
</execution_dag>
<routing>
| Pattern | Reference | Function |
|---------|-----------|----------|
| Type definitions | [references/primitives.md](references/primitives.md) | ο, λ, τ, Σ types |
| Topology operations | [references/topology.md](references/topology.md) | Homology, filtration |
| Axiom systems | [references/axioms.md](references/axioms.md) | Lex constraints |
| Holonic structure | [references/holons.md](references/holons.md) | Scale-invariance |
| Agent execution | [agents/](agents/) | DSPy modules |
</routing>
<holarchic_principle>
```
HOLON DEFINITION
────────────────
A holon H is simultaneously:
• A WHOLE containing sub-holons: H = {h₁, h₂, ..., hₙ}
• A PART within super-holons: H ∈ H' for some H'
SELF-SIMILARITY
───────────────
structure(H) ≅ structure(hᵢ) ≅ structure(H')
The same λ-operations apply at every scale:
λᵢ : οᵢ → τᵢ (micro)
λⱼ : οⱼ → τⱼ (meso)
λₖ : οₖ → τₖ (macro)
HOMOICONICITY
─────────────
The representation IS the thing represented.
A holon's structure encodes its own semantics.
```
</holarchic_principle>
<topological_foundation>
```
SIMPLICIAL COMPLEX Σ
────────────────────
Σ = (V, S) where:
• V = vertices (ο-bases)
• S = simplices (λ-operations)
• σ ∈ S ⟹ all faces of σ ∈ S
k-SIMPLEX
─────────
σₖ = [v₀, v₁, ..., vₖ]
0-simplex: vertex (ο)
1-simplex: edge (λ binary)
2-simplex: triangle (λ ternary)
k-simplex: k+1 vertices in relation
PERSISTENT HOMOLOGY
───────────────────
Track topological features across scales:
H₀: Connected components (ο-clusters)
H₁: Loops/cycles (λ-feedback)
H₂: Voids/cavities (τ-gaps)
PERSISTENCE DIAGRAM
───────────────────
{(bᵢ, dᵢ)} where:
bᵢ = birth (feature appears)
dᵢ = death (feature disappears)
|dᵢ - bᵢ| = persistence (significance)
```
</topological_foundation>
<lex_axiom_system>
```
TYPE SYSTEM
───────────
ο : NodeType — Base entities
λ : EdgeType — Operations/relations
τ : TerminalType — Target purposes
π : PropertyType — Attributes
STRUCTURAL AXIOMS
─────────────────
transitivity(λ): λ(a,b) ∧ λ(b,c) ⟹ λ(a,c)
symmetry(λ): λ(a,b) ⟹ λ(b,a)
reflexivity(λ): ∀a. λ(a,a)
acyclicity(λ): ¬∃path. λ*(a,a)
PROPERTY AXIOMS
───────────────
propagation(π,λ): λ(a,b) ∧ π(a,v) ⟹ π(b,v)
inheritance(π,λ): λ(a,b) ⟹ π(b) ⊇ π(a)
constraint(π,C): ∀x. π(x) ∈ C
PATH LOGIC
──────────
reach(a,b,n): ∃λ₁...λₙ. λₙ(...λ₁(a)...) = b
shortest(a,b): min{n : reach(a,b,n)}
all_paths(a,b): {p : p connects a to b}
```
</lex_axiom_system>
<workflow>
```python
def execute(query: str) -> Holon:
"""
Universal execution: Query → Holon
λ-calculus over simplicial complexes with Lex validation.
"""
# Phase 1: ENCODE — Query → Simplicial Complex
Σ = agents.encoder.encode(query)
# Σ.vertices: Set[ο]
# Σ.simplices: Set[σₖ]
# Phase 2: ANALYZE — Compute Persistent Homology
dgm = agents.topologist.homology(Σ)
# dgm: PersistenceDiagram with birth-death pairs
# Phase 3: RESOLVE — Find λ-operations
Λ = agents.resolver.lambdas(Σ, dgm)
# Λ: Set[λ] filtered by persistence
# Phase 4: TARGET — Identify τ-terminals
T = agents.targeter.terminals(Σ, Λ)
# T: Set[τ] reachable from query bases
# Phase 5: VALIDATE — Check Lex axioms
valid = agents.validator.check(Σ, Λ, T)
# valid: ValidationResult with axiom compliance
# Phase 6: SYNTHESIZE — Generate holon
H = agents.synthesizer.holon(Σ, Λ, T, dgm)
# H: Holon with self-similar structure
return H
```
</workflow>
<validation>
| Invariant | Check | Target |
|-----------|-------|--------|
| Acyclicity | `¬∃cycle in λ-graph` | True |
| Groundedness | `∀ο. ∃λ. λ(ο) defined` | 100% |
| Connectivity | `H₀(Σ) = 1` | Single component |
| Density | `|simplices|/|vertices| ≥ 4` | Emergent capacity |
| Persistence | `max(dᵢ - bᵢ) > θ` | Significant features |
</validation>
<integration>
| System | Mapping |
|--------|---------|
| hierarchical-reasoning | Strategic=τ, Tactical=λ, Operational=ο |
| knowledge-graph | Vertices=ο, Hyperedges=λ, Terminals=τ |
| graph | k-bisimulation on Σ |
| abduct | Decomposition into simplices |
| persistent-homology | Filtration → Barcodes |
</integration>
<file_structure>
```
ontolog/
├── SKILL.md # This file
├── references/
│ ├── primitives.md # ο, λ, τ, Σ type definitions
│ ├── topology.md # Homology, Laplacians, filtration
│ ├── axioms.md # Lex constraint system
│ └── holons.md # Holarchic structure theory
├── agents/
│ ├── __init__.py # Module exports
│ ├── types.py # Type definitions
│ ├── encoder.py # Query → Σ
│ ├── topologist.py # Σ → Persistence diagram
│ ├── resolver.py # λ-operation resolution
│ ├── targeter.py # τ-terminal identification
│ ├── validator.py # Lex axiom checking
│ ├── synthesizer.py # Holon generation
│ └── orchestrator.py # Pipeline coordination
└── scripts/
├── validate.py # Axiom validation
└── reason.py # Query execution
```
</file_structure>
This skill implements a holarchic reasoning framework that runs symbolic λ-calculus over simplicial complexes to produce self-similar, scale-aware holons. It combines persistent homology for multi-scale topological analysis with sheaf-style local-to-global consistency and a Lex-style axiom system for formal constraint validation. The result is a pipeline that encodes queries into topological structures, resolves operations, targets terminals, and synthesizes validated holons.
A query is encoded as a simplicial complex whose vertices serve as ο (base entities) and simplices encode λ (operations). Persistent homology analyzes features across filtrations to prioritize persistent λ-operations. A resolver identifies λ mappings and a targeter locates τ terminals reachable from bases. A Lex axiom validator checks structural and property constraints before synthesizing a holon that preserves holarchic self-similarity and topological invariants.
How are λ operations discovered from data?
The system extracts candidate simplices from the encoded complex, scores them by persistence and topology, then filters and registers λ operations via the resolver.
What ensures local-to-global consistency?
Sheaf-inspired consistency checks and Lex axioms propagate properties across λ relations so local constraints aggregate coherently to global holon structure.