home / skills / zpankz / mcp-skillset / context-orchestrator
This skill orchestrates multi-source context retrieval from limitless, research, and pieces to inform decisions beyond the current codebase.
npx playbooks add skill zpankz/mcp-skillset --skill context-orchestratorReview the files below or copy the command above to add this skill to your agents.
---
name: context-orchestrator
description: |
Orchestrates context retrieval from three CLI sources: limitless (personal
life transcripts), research (online documentation/facts), pieces (local code/LTM).
Use when external context is needed beyond the current codebase. Triggers on
/context, /limitless, /research, /pieces, or balanced detection on complex prompts
involving personal memory, technical documentation, or development history.
triggers: [context, lifelog, research, ltm, recall, lookup, pieces, limitless, pendant, documentation, fact-check]
---
# Context Orchestrator
A unified context extraction system that intelligently routes queries to three specialized CLI tools based on intent classification.
## Quick Start
**Commands** (use directly):
- `/context [query]` - All sources in parallel (personal + research + code)
- `/limitless [query]` - Personal memory (lifelogs, meetings, conversations)
- `/research [query]` - Online documentation (facts, APIs, guides)
- `/pieces [query]` - Local code context (snippets, LTM, history)
**Auto-Detection**: The hook detects context-relevant prompts and suggests CLI commands.
**Maintenance**: See `README.md` for configuration, debugging, and upgrade instructions.
## Context Sources
| Source | CLI | Data Type | Best For |
|--------|-----|-----------|----------|
| **Personal** | `limitless` | Life transcripts, meetings, conversations | "What did I discuss...", "Yesterday's meeting..." |
| **Online** | `research` | Documentation, facts, academic papers | "How to implement...", "Verify that..." |
| **Local** | `pieces` | Code snippets, work history, LTM | "My previous implementation...", "Code I wrote..." |
## Slash Commands
| Command | Description | Mode |
|---------|-------------|------|
| `/context [query]` | Multi-source extraction | Parallel (all relevant) |
| `/limitless [query]` | Personal life context | Single (limitless) |
| `/research [query]` | Online documentation | Single (research) |
| `/pieces [query]` | Local code context | Single (pieces) |
## Intent Classification
### Domain Patterns
```yaml
personal_context:
patterns:
- "what did (I|we) (discuss|talk|say|mention)"
- "meeting|conversation|daily|yesterday|last week"
- "lifelog|pendant|recording"
- "(told me|mentioned|said) about"
primary_cli: limitless
fallback: pieces (if code-related)
online_research:
patterns:
- "documentation|docs for|how to"
- "fact-check|verify|confirm|is it true"
- "api|sdk|library|framework"
- "best practice|implementation guide"
- "pex|medical|grounding"
primary_cli: research
fallback: pieces (for code examples)
local_context:
patterns:
- "my code|code I wrote|my implementation"
- "saved|snippet|previous solution"
- "ltm|long-term memory|work history"
- "what was I working on"
primary_cli: pieces
fallback: limitless (for discussion context)
```
## Routing Decision Tree
```
User Request
│
├── Explicit Command?
│ ├── /context → Parallel Mode (all sources)
│ ├── /limitless → Single Mode (limitless)
│ ├── /research → Single Mode (research)
│ └── /pieces → Single Mode (pieces)
│
├── Intent Detection (from hook signal)
│ ├── Personal patterns → limitless
│ ├── Research patterns → research
│ ├── Local patterns → pieces
│ └── Multiple matches → Parallel Mode
│
└── No Clear Signal
└── Skip (no external context needed)
```
## Orchestration Modes
### Single Source Mode
Use when intent clearly maps to one CLI:
```yaml
mode: single
process:
1. Identify primary CLI from intent
2. Construct appropriate command
3. Execute and capture output
4. Return structured context
latency: 1-5 seconds
```
### Parallel Mode
Use for `/context` or multi-domain queries:
```yaml
mode: parallel
process:
1. Spawn subagents for each relevant CLI
2. Execute extractions in parallel
3. Collect and merge results
4. Deduplicate and rank by relevance
latency: Max of individual CLIs (5-15 seconds)
```
### Augmented Mode (with Deep-Research)
Use when integrating with deep-research skill:
```yaml
mode: augmented
process:
1. Pre-enrichment: Gather personal/local context
2. Hand off to deep-research Phase 1
3. Use research CLI as primary in Phase 3
4. Include pieces patterns in triangulation
integration_point: Phase 0 pre-enrichment
```
## CLI Command Reference
### Limitless (Personal Context)
```bash
# SEMANTIC SEARCH (Recommended) - Vector-based similarity
limitless semantic-search "ICU critical care" --types Lifelog,Chat,Person --limit 5 --json
# Hybrid search (semantic + full-text)
limitless search "medical exam" --mode hybrid --json
# Full-text search (keyword)
limitless lifelogs search "query" --limit 10 --format json
# Get today's snapshot
limitless workflow daily $(date +%Y-%m-%d) --format json
# Get recent activity (last N hours)
limitless workflow recent --hours 24 --format json
# Cross-source search
limitless workflow search "query" --format json
# Graph query (for relationships - FalkorDBLite)
limitless graph query "MATCH (p:Person)-[:SPOKE_IN]->(l:Lifelog) RETURN p.name, count(l) ORDER BY count(l) DESC LIMIT 5"
# Check embedding status
limitless index status
```
### Research (Online Context)
```bash
# Technical documentation
research docs -t "query" -k "framework" --format json
# Fact verification
research fact-check -t "claim to verify" --graph
# Medical/PEX grounding
research pex-grounding -t "medical query"
# SDK/API reference
research sdk-api -t "api question"
# Academic search
research academic -t "research topic"
```
### Pieces (Local Context)
```bash
# Ask with LTM (Long-Term Memory)
pieces ask "query" --ltm
# Semantic code search
pieces search --mode ncs "pattern"
# With file context
pieces ask "query" -f file1.py file2.py
# With saved materials
pieces ask "query" -m 1 2 3
# Full-text search
pieces search --mode fts "exact text"
```
## Subagent Invocation
When spawning subagents for CLI extraction:
```yaml
limitless_agent:
type: general-purpose
prompt: "Extract personal context using limitless CLI. Query: {query}"
spec: agents/limitless-agent.md
research_agent:
type: researcher
prompt: "Extract online documentation using research CLI. Query: {query}"
spec: agents/research-agent.md
pieces_agent:
type: general-purpose
prompt: "Extract local code context using pieces CLI. Query: {query}"
spec: agents/pieces-agent.md
```
## Session Caching
### Cache Strategy
```yaml
cache_location: ~/.claude/.context-cache/session-context.json
ttl_by_source:
limitless: 30 minutes # Personal data stable
research: 60 minutes # Docs change slowly
pieces: 15 minutes # Active development
cache_key_format: "{source}:{command_type}:{query_hash}"
invalidation:
- New session starts
- Explicit refresh request
- TTL expiration
```
### Cache Operations
```python
# Check cache before CLI invocation
cache_key = f"{source}:{hash(query)}"
if cached := get_cache(cache_key):
if not expired(cached):
return cached.result
# After successful extraction
set_cache(cache_key, result, ttl=TTL_BY_SOURCE[source])
```
## Integration with Deep-Research
### Phase 0 Pre-Enrichment
When deep-research is invoked, optionally gather context first:
```yaml
phase_0_context:
trigger: User has relevant personal/local background
actions:
personal_background:
cli: limitless
query: "Search for relevant conversations about {topic}"
local_patterns:
cli: pieces
query: "Find related code I've written about {topic}"
output:
format: Context briefing for Phase 1 scoping
content:
- Relevant past discussions
- Related code implementations
- Known constraints from experience
```
### Integration Points
| Deep-Research Phase | Context Integration |
|---------------------|---------------------|
| Phase 1 (Scoping) | Include personal context as background |
| Phase 3 (Querying) | Use research CLI as primary retrieval |
| Phase 4 (Triangulation) | Add pieces code patterns as evidence |
## Output Format
### Structured Context Response
```json
{
"source": "limitless|research|pieces",
"query": "original query",
"results": [
{
"title": "Result title",
"content": "Extracted content...",
"metadata": {
"timestamp": "ISO8601",
"confidence": 0.85,
"source_type": "lifelog|document|snippet"
}
}
],
"cached": false,
"latency_ms": 1234
}
```
### Multi-Source Response
```json
{
"mode": "parallel",
"sources": {
"limitless": { ... },
"research": { ... },
"pieces": { ... }
},
"merged_context": "Synthesized context from all sources...",
"total_latency_ms": 3456
}
```
## Error Handling
### CLI Unavailability
```yaml
on_cli_unavailable:
limitless: "Limitless CLI not configured. Skip personal context."
research: "Research CLI not available. Skip online lookup."
pieces: "Pieces not running. Skip local context."
fallback: Continue with available sources
```
### Timeout Handling
```yaml
timeouts:
limitless: 10s
research: 15s
pieces: 8s
on_timeout:
action: Return partial results
message: "Context extraction timed out. Proceeding with available data."
```
## Usage Examples
### Example 1: Personal Memory Query
**User**: "What did John say about the API deadline in yesterday's meeting?"
**Process**:
1. Intent detector signals: `{need_limitless: true, confidence: 0.9}`
2. Route to limitless single-source mode
3. Execute: `limitless lifelogs search "John API deadline" --limit 5 --format json`
4. Return structured context with relevant excerpts
### Example 2: Technical Documentation
**User**: "How do I implement WebSocket authentication in Bun?"
**Process**:
1. Intent detector signals: `{need_research: true, confidence: 0.85}`
2. Route to research single-source mode
3. Execute: `research docs -t "WebSocket authentication" -k "bun" --format json`
4. Return documentation with code examples
### Example 3: Multi-Source Context
**User**: `/context What approach should I use for the auth refactor?`
**Process**:
1. Explicit `/context` command triggers parallel mode
2. Spawn three subagents:
- limitless: "auth refactor discussions"
- research: "auth best practices"
- pieces: "previous auth implementations"
3. Collect and merge results
4. Return comprehensive context from all sources
## Best Practices
1. **Cache First**: Always check session cache before CLI invocation
2. **Limit Results**: Use `--limit` flags to avoid context overflow
3. **JSON Output**: Prefer JSON format for structured parsing
4. **Timeout Protection**: Set reasonable timeouts per CLI
5. **Graceful Degradation**: Continue with available sources if one fails
6. **Relevance Ranking**: Prioritize results by confidence/relevance score
---
## Requirements
This skill requires three CLI tools. Graceful degradation occurs if any are missing:
| CLI | Installation | Required For |
|-----|--------------|--------------|
| `limitless` | `bun run ~/Projects/limitless-cli/bin/limitless.ts` | Personal context |
| `research` | `~/.local/bin/research` | Online documentation |
| `pieces` | `/opt/homebrew/bin/pieces` + PiecesOS running | Local code/LTM |
Verify availability: Run `bash ~/.claude/hooks/session-context-primer.sh`
## Hooks Integration
This skill uses two hooks for automatic context detection:
### UserPromptSubmit Hook
- **File**: `~/.claude/hooks/context-intent-detector.ts`
- **Trigger**: Every user prompt
- **Function**: Pattern matching to detect context-relevant queries
- **Output**: JSON signal with detected sources and confidence
- **Timeout**: 1.5s
### SessionStart Hook
- **File**: `~/.claude/hooks/session-context-primer.sh`
- **Trigger**: Session initialization
- **Function**: Validates CLI availability and initializes cache
- **Output**: System prompt with available sources
- **Timeout**: 5s
## Progressive Loading
This skill uses progressive disclosure to optimize context efficiency:
| File | Purpose | When Loaded |
|------|---------|-------------|
| `SKILL.md` | Quick start, command reference | Always (main skill) |
| `README.md` | Configuration, debugging, upgrades | On maintenance request |
| `agents/*.md` | Subagent specifications | When parallel mode triggered |
| `references/*.md` | Detailed CLI documentation | When deep reference needed |
| `scripts/*.py` | Cache/metrics utilities | On explicit invocation |
## Troubleshooting
### Skill Not Triggering
1. Verify hooks registered: `grep context ~/.claude/settings.json`
2. Check pattern matching: `echo '{"prompt":"your query"}' | bun run ~/.claude/hooks/context-intent-detector.ts`
3. Use explicit command: `/context <query>`
### CLI Unavailable
1. Run session primer: `bash ~/.claude/hooks/session-context-primer.sh`
2. Check individual CLIs:
- `limitless config show` (needs API key)
- `research --help`
- `pieces mcp status` (needs PiecesOS)
### Subagents Timing Out
1. Increase timeout in settings.json (default 1.5-5s)
2. Check CLI latency individually
3. View cache: `cat ~/.claude/.context-cache/session-context.json`
### Cache Issues
1. Clear cache: `python3 ~/.claude/skill-db/context-orchestrator/scripts/cache-manager.py clear`
2. View stats: `python3 ~/.claude/skill-db/context-orchestrator/scripts/cache-manager.py stats`
## Additional Resources
- **Configuration & Debugging**: See [README.md](README.md)
- **Deep-Research Integration**: See [DEEP-RESEARCH-INTEGRATION.md](DEEP-RESEARCH-INTEGRATION.md)
- **CLI Command Reference**: See [references/cli-commands.md](references/cli-commands.md)
- **Security Review**: See [docs/SECURITY-REVIEW.md](docs/SECURITY-REVIEW.md)
- **Skill Metadata**: See [skill.yaml](skill.yaml)
This skill orchestrates context retrieval across three CLI sources—personal life transcripts (limitless), online documentation (research), and local code/history (pieces). It routes queries using explicit slash commands or intent detection to return structured, relevance-ranked context for development and decision-making. Use it when external context beyond the current codebase is required.
The system classifies user intent via lightweight pattern matching or explicit commands. Single-source mode runs the appropriate CLI when intent is clear; parallel mode spawns subagents to query all three CLIs and merge results. Outputs are JSON-structured context objects with metadata, confidence scores, caching flags, and latency measurements.
What happens if one CLI is offline?
The orchestrator skips the unavailable source, returns partial results, and includes a clear message about the skipped CLI.
How does caching work?
Session cache uses per-source TTLs (limitless ~30m, research ~60m, pieces ~15m) and returns cached results when valid to reduce repeated CLI calls.