home / skills / wshobson / agents / python-type-safety

This skill helps you add and enforce Python type hints, generics, and protocols with strict static checks using mypy or pyright.

This is most likely a fork of the python-type-safety-skill skill from julianobarbosa
npx playbooks add skill wshobson/agents --skill python-type-safety

Review the files below or copy the command above to add this skill to your agents.

Files (1)
SKILL.md
11.0 KB
---
name: python-type-safety
description: Python type safety with type hints, generics, protocols, and strict type checking. Use when adding type annotations, implementing generic classes, defining structural interfaces, or configuring mypy/pyright.
---

# Python Type Safety

Leverage Python's type system to catch errors at static analysis time. Type annotations serve as enforced documentation that tooling validates automatically.

## When to Use This Skill

- Adding type hints to existing code
- Creating generic, reusable classes
- Defining structural interfaces with protocols
- Configuring mypy or pyright for strict checking
- Understanding type narrowing and guards
- Building type-safe APIs and libraries

## Core Concepts

### 1. Type Annotations

Declare expected types for function parameters, return values, and variables.

### 2. Generics

Write reusable code that preserves type information across different types.

### 3. Protocols

Define structural interfaces without inheritance (duck typing with type safety).

### 4. Type Narrowing

Use guards and conditionals to narrow types within code blocks.

## Quick Start

```python
def get_user(user_id: str) -> User | None:
    """Return type makes 'might not exist' explicit."""
    ...

# Type checker enforces handling None case
user = get_user("123")
if user is None:
    raise UserNotFoundError("123")
print(user.name)  # Type checker knows user is User here
```

## Fundamental Patterns

### Pattern 1: Annotate All Public Signatures

Every public function, method, and class should have type annotations.

```python
def get_user(user_id: str) -> User:
    """Retrieve user by ID."""
    ...

def process_batch(
    items: list[Item],
    max_workers: int = 4,
) -> BatchResult[ProcessedItem]:
    """Process items concurrently."""
    ...

class UserRepository:
    def __init__(self, db: Database) -> None:
        self._db = db

    async def find_by_id(self, user_id: str) -> User | None:
        """Return User if found, None otherwise."""
        ...

    async def find_by_email(self, email: str) -> User | None:
        ...

    async def save(self, user: User) -> User:
        """Save and return user with generated ID."""
        ...
```

Use `mypy --strict` or `pyright` in CI to catch type errors early. For existing projects, enable strict mode incrementally using per-module overrides.

### Pattern 2: Use Modern Union Syntax

Python 3.10+ provides cleaner union syntax.

```python
# Preferred (3.10+)
def find_user(user_id: str) -> User | None:
    ...

def parse_value(v: str) -> int | float | str:
    ...

# Older style (still valid, needed for 3.9)
from typing import Optional, Union

def find_user(user_id: str) -> Optional[User]:
    ...
```

### Pattern 3: Type Narrowing with Guards

Use conditionals to narrow types for the type checker.

```python
def process_user(user_id: str) -> UserData:
    user = find_user(user_id)

    if user is None:
        raise UserNotFoundError(f"User {user_id} not found")

    # Type checker knows user is User here, not User | None
    return UserData(
        name=user.name,
        email=user.email,
    )

def process_items(items: list[Item | None]) -> list[ProcessedItem]:
    # Filter and narrow types
    valid_items = [item for item in items if item is not None]
    # valid_items is now list[Item]
    return [process(item) for item in valid_items]
```

### Pattern 4: Generic Classes

Create type-safe reusable containers.

```python
from typing import TypeVar, Generic

T = TypeVar("T")
E = TypeVar("E", bound=Exception)

class Result(Generic[T, E]):
    """Represents either a success value or an error."""

    def __init__(
        self,
        value: T | None = None,
        error: E | None = None,
    ) -> None:
        if (value is None) == (error is None):
            raise ValueError("Exactly one of value or error must be set")
        self._value = value
        self._error = error

    @property
    def is_success(self) -> bool:
        return self._error is None

    @property
    def is_failure(self) -> bool:
        return self._error is not None

    def unwrap(self) -> T:
        """Get value or raise the error."""
        if self._error is not None:
            raise self._error
        return self._value  # type: ignore[return-value]

    def unwrap_or(self, default: T) -> T:
        """Get value or return default."""
        if self._error is not None:
            return default
        return self._value  # type: ignore[return-value]

# Usage preserves types
def parse_config(path: str) -> Result[Config, ConfigError]:
    try:
        return Result(value=Config.from_file(path))
    except ConfigError as e:
        return Result(error=e)

result = parse_config("config.yaml")
if result.is_success:
    config = result.unwrap()  # Type: Config
```

## Advanced Patterns

### Pattern 5: Generic Repository

Create type-safe data access patterns.

```python
from typing import TypeVar, Generic
from abc import ABC, abstractmethod

T = TypeVar("T")
ID = TypeVar("ID")

class Repository(ABC, Generic[T, ID]):
    """Generic repository interface."""

    @abstractmethod
    async def get(self, id: ID) -> T | None:
        """Get entity by ID."""
        ...

    @abstractmethod
    async def save(self, entity: T) -> T:
        """Save and return entity."""
        ...

    @abstractmethod
    async def delete(self, id: ID) -> bool:
        """Delete entity, return True if existed."""
        ...

class UserRepository(Repository[User, str]):
    """Concrete repository for Users with string IDs."""

    async def get(self, id: str) -> User | None:
        row = await self._db.fetchrow(
            "SELECT * FROM users WHERE id = $1", id
        )
        return User(**row) if row else None

    async def save(self, entity: User) -> User:
        ...

    async def delete(self, id: str) -> bool:
        ...
```

### Pattern 6: TypeVar with Bounds

Restrict generic parameters to specific types.

```python
from typing import TypeVar
from pydantic import BaseModel

ModelT = TypeVar("ModelT", bound=BaseModel)

def validate_and_create(model_cls: type[ModelT], data: dict) -> ModelT:
    """Create a validated Pydantic model from dict."""
    return model_cls.model_validate(data)

# Works with any BaseModel subclass
class User(BaseModel):
    name: str
    email: str

user = validate_and_create(User, {"name": "Alice", "email": "[email protected]"})
# user is typed as User

# Type error: str is not a BaseModel subclass
result = validate_and_create(str, {"name": "Alice"})  # Error!
```

### Pattern 7: Protocols for Structural Typing

Define interfaces without requiring inheritance.

```python
from typing import Protocol, runtime_checkable

@runtime_checkable
class Serializable(Protocol):
    """Any class that can be serialized to/from dict."""

    def to_dict(self) -> dict:
        ...

    @classmethod
    def from_dict(cls, data: dict) -> "Serializable":
        ...

# User satisfies Serializable without inheriting from it
class User:
    def __init__(self, id: str, name: str) -> None:
        self.id = id
        self.name = name

    def to_dict(self) -> dict:
        return {"id": self.id, "name": self.name}

    @classmethod
    def from_dict(cls, data: dict) -> "User":
        return cls(id=data["id"], name=data["name"])

def serialize(obj: Serializable) -> str:
    """Works with any Serializable object."""
    return json.dumps(obj.to_dict())

# Works - User matches the protocol
serialize(User("1", "Alice"))

# Runtime checking with @runtime_checkable
isinstance(User("1", "Alice"), Serializable)  # True
```

### Pattern 8: Common Protocol Patterns

Define reusable structural interfaces.

```python
from typing import Protocol

class Closeable(Protocol):
    """Resource that can be closed."""
    def close(self) -> None: ...

class AsyncCloseable(Protocol):
    """Async resource that can be closed."""
    async def close(self) -> None: ...

class Readable(Protocol):
    """Object that can be read from."""
    def read(self, n: int = -1) -> bytes: ...

class HasId(Protocol):
    """Object with an ID property."""
    @property
    def id(self) -> str: ...

class Comparable(Protocol):
    """Object that supports comparison."""
    def __lt__(self, other: "Comparable") -> bool: ...
    def __le__(self, other: "Comparable") -> bool: ...
```

### Pattern 9: Type Aliases

Create meaningful type names.

**Note:** The `type` statement was introduced in Python 3.10 for simple aliases. Generic type statements require Python 3.12+.

```python
# Python 3.10+ type statement for simple aliases
type UserId = str
type UserDict = dict[str, Any]

# Python 3.12+ type statement with generics
type Handler[T] = Callable[[Request], T]
type AsyncHandler[T] = Callable[[Request], Awaitable[T]]

# Python 3.9-3.11 style (needed for broader compatibility)
from typing import TypeAlias
from collections.abc import Callable, Awaitable

UserId: TypeAlias = str
Handler: TypeAlias = Callable[[Request], Response]

# Usage
def register_handler(path: str, handler: Handler[Response]) -> None:
    ...
```

### Pattern 10: Callable Types

Type function parameters and callbacks.

```python
from collections.abc import Callable, Awaitable

# Sync callback
ProgressCallback = Callable[[int, int], None]  # (current, total)

# Async callback
AsyncHandler = Callable[[Request], Awaitable[Response]]

# With named parameters (using Protocol)
class OnProgress(Protocol):
    def __call__(
        self,
        current: int,
        total: int,
        *,
        message: str = "",
    ) -> None: ...

def process_items(
    items: list[Item],
    on_progress: ProgressCallback | None = None,
) -> list[Result]:
    for i, item in enumerate(items):
        if on_progress:
            on_progress(i, len(items))
        ...
```

## Configuration

### Strict Mode Checklist

For `mypy --strict` compliance:

```toml
# pyproject.toml
[tool.mypy]
python_version = "3.12"
strict = true
warn_return_any = true
warn_unused_ignores = true
disallow_untyped_defs = true
disallow_incomplete_defs = true
no_implicit_optional = true
```

Incremental adoption goals:
- All function parameters annotated
- All return types annotated
- Class attributes annotated
- Minimize `Any` usage (acceptable for truly dynamic data)
- Generic collections use type parameters (`list[str]` not `list`)

For existing codebases, enable strict mode per-module using `# mypy: strict` or configure per-module overrides in `pyproject.toml`.

## Best Practices Summary

1. **Annotate all public APIs** - Functions, methods, class attributes
2. **Use `T | None`** - Modern union syntax over `Optional[T]`
3. **Run strict type checking** - `mypy --strict` in CI
4. **Use generics** - Preserve type info in reusable code
5. **Define protocols** - Structural typing for interfaces
6. **Narrow types** - Use guards to help the type checker
7. **Bound type vars** - Restrict generics to meaningful types
8. **Create type aliases** - Meaningful names for complex types
9. **Minimize `Any`** - Use specific types or generics. `Any` is acceptable for truly dynamic data or when interfacing with untyped third-party code
10. **Document with types** - Types are enforceable documentation

Overview

This skill teaches practical Python type safety using type hints, generics, protocols, and strict static checking. It focuses on adding and enforcing annotations, building reusable generic types, and configuring mypy/pyright to catch errors before runtime. The goal is to make APIs and libraries self-documenting and safer to refactor.

How this skill works

The skill inspects public signatures, variable and return annotations, and common type patterns to recommend or enforce explicit types. It shows how to implement generics, Protocol-based structural interfaces, type narrowing patterns, and practical repository and Result wrappers. It also provides configuration tips for enabling strict checks with mypy or pyright and incremental adoption strategies.

When to use it

  • Adding or retrofitting type hints to an existing codebase
  • Designing generic, reusable components or container types
  • Defining structural interfaces using Protocols for duck typing
  • Configuring CI to run mypy --strict or strict pyright checks
  • Building type-safe public APIs and libraries that need stable contracts

Best practices

  • Annotate all public functions, methods, and class attributes
  • Prefer modern union syntax (T | None) on Python 3.10+
  • Use generics (TypeVar, Generic) to preserve concrete types across containers
  • Define Protocols for structural interfaces instead of inheritance where appropriate
  • Enable strict type checking in CI and adopt it incrementally per module
  • Minimize use of Any; reserve it for truly dynamic or untyped third-party data

Example use cases

  • Annotate a service layer to guarantee return types and eliminate runtime attribute errors
  • Implement a generic Result[T, E] to represent success or failure with preserved types
  • Create a generic Repository[T, ID] interface for type-safe data access across models
  • Define Serializable and Closeable Protocols so functions accept any compatible implementation
  • Configure mypy in pyproject.toml and progressively enable strict checks for legacy modules

FAQ

How do I start adding types to a large legacy project?

Enable strict checking incrementally: configure mypy per-module, add # mypy: strict to new or high-risk modules, and prioritize annotating public APIs first.

When should I use Protocol vs abstract base class?

Use Protocols for structural typing when you only need specific methods or properties and want loose coupling; use abstract base classes when you need enforced inheritance or shared implementation.