home / skills / wshobson / agents / python-observability
This skill helps you instrument Python applications with structured logging, metrics, and tracing to diagnose production issues quickly.
npx playbooks add skill wshobson/agents --skill python-observabilityReview the files below or copy the command above to add this skill to your agents.
---
name: python-observability
description: Python observability patterns including structured logging, metrics, and distributed tracing. Use when adding logging, implementing metrics collection, setting up tracing, or debugging production systems.
---
# Python Observability
Instrument Python applications with structured logs, metrics, and traces. When something breaks in production, you need to answer "what, where, and why" without deploying new code.
## When to Use This Skill
- Adding structured logging to applications
- Implementing metrics collection with Prometheus
- Setting up distributed tracing across services
- Propagating correlation IDs through request chains
- Debugging production issues
- Building observability dashboards
## Core Concepts
### 1. Structured Logging
Emit logs as JSON with consistent fields for production environments. Machine-readable logs enable powerful queries and alerts. For local development, consider human-readable formats.
### 2. The Four Golden Signals
Track latency, traffic, errors, and saturation for every service boundary.
### 3. Correlation IDs
Thread a unique ID through all logs and spans for a single request, enabling end-to-end tracing.
### 4. Bounded Cardinality
Keep metric label values bounded. Unbounded labels (like user IDs) explode storage costs.
## Quick Start
```python
import structlog
structlog.configure(
processors=[
structlog.processors.TimeStamper(fmt="iso"),
structlog.processors.JSONRenderer(),
],
)
logger = structlog.get_logger()
logger.info("Request processed", user_id="123", duration_ms=45)
```
## Fundamental Patterns
### Pattern 1: Structured Logging with Structlog
Configure structlog for JSON output with consistent fields.
```python
import logging
import structlog
def configure_logging(log_level: str = "INFO") -> None:
"""Configure structured logging for the application."""
structlog.configure(
processors=[
structlog.contextvars.merge_contextvars,
structlog.processors.add_log_level,
structlog.processors.TimeStamper(fmt="iso"),
structlog.processors.StackInfoRenderer(),
structlog.processors.format_exc_info,
structlog.processors.JSONRenderer(),
],
wrapper_class=structlog.make_filtering_bound_logger(
getattr(logging, log_level.upper())
),
context_class=dict,
logger_factory=structlog.PrintLoggerFactory(),
cache_logger_on_first_use=True,
)
# Initialize at application startup
configure_logging("INFO")
logger = structlog.get_logger()
```
### Pattern 2: Consistent Log Fields
Every log entry should include standard fields for filtering and correlation.
```python
import structlog
from contextvars import ContextVar
# Store correlation ID in context
correlation_id: ContextVar[str] = ContextVar("correlation_id", default="")
logger = structlog.get_logger()
def process_request(request: Request) -> Response:
"""Process request with structured logging."""
logger.info(
"Request received",
correlation_id=correlation_id.get(),
method=request.method,
path=request.path,
user_id=request.user_id,
)
try:
result = handle_request(request)
logger.info(
"Request completed",
correlation_id=correlation_id.get(),
status_code=200,
duration_ms=elapsed,
)
return result
except Exception as e:
logger.error(
"Request failed",
correlation_id=correlation_id.get(),
error_type=type(e).__name__,
error_message=str(e),
)
raise
```
### Pattern 3: Semantic Log Levels
Use log levels consistently across the application.
| Level | Purpose | Examples |
|-------|---------|----------|
| `DEBUG` | Development diagnostics | Variable values, internal state |
| `INFO` | Request lifecycle, operations | Request start/end, job completion |
| `WARNING` | Recoverable anomalies | Retry attempts, fallback used |
| `ERROR` | Failures needing attention | Exceptions, service unavailable |
```python
# DEBUG: Detailed internal information
logger.debug("Cache lookup", key=cache_key, hit=cache_hit)
# INFO: Normal operational events
logger.info("Order created", order_id=order.id, total=order.total)
# WARNING: Abnormal but handled situations
logger.warning(
"Rate limit approaching",
current_rate=950,
limit=1000,
reset_seconds=30,
)
# ERROR: Failures requiring investigation
logger.error(
"Payment processing failed",
order_id=order.id,
error=str(e),
payment_provider="stripe",
)
```
Never log expected behavior at `ERROR`. A user entering a wrong password is `INFO`, not `ERROR`.
### Pattern 4: Correlation ID Propagation
Generate a unique ID at ingress and thread it through all operations.
```python
from contextvars import ContextVar
import uuid
import structlog
correlation_id: ContextVar[str] = ContextVar("correlation_id", default="")
def set_correlation_id(cid: str | None = None) -> str:
"""Set correlation ID for current context."""
cid = cid or str(uuid.uuid4())
correlation_id.set(cid)
structlog.contextvars.bind_contextvars(correlation_id=cid)
return cid
# FastAPI middleware example
from fastapi import Request
async def correlation_middleware(request: Request, call_next):
"""Middleware to set and propagate correlation ID."""
# Use incoming header or generate new
cid = request.headers.get("X-Correlation-ID") or str(uuid.uuid4())
set_correlation_id(cid)
response = await call_next(request)
response.headers["X-Correlation-ID"] = cid
return response
```
Propagate to outbound requests:
```python
import httpx
async def call_downstream_service(endpoint: str, data: dict) -> dict:
"""Call downstream service with correlation ID."""
async with httpx.AsyncClient() as client:
response = await client.post(
endpoint,
json=data,
headers={"X-Correlation-ID": correlation_id.get()},
)
return response.json()
```
## Advanced Patterns
### Pattern 5: The Four Golden Signals with Prometheus
Track these metrics for every service boundary:
```python
from prometheus_client import Counter, Histogram, Gauge
# Latency: How long requests take
REQUEST_LATENCY = Histogram(
"http_request_duration_seconds",
"Request latency in seconds",
["method", "endpoint", "status"],
buckets=[0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 1, 2.5, 5, 10],
)
# Traffic: Request rate
REQUEST_COUNT = Counter(
"http_requests_total",
"Total HTTP requests",
["method", "endpoint", "status"],
)
# Errors: Error rate
ERROR_COUNT = Counter(
"http_errors_total",
"Total HTTP errors",
["method", "endpoint", "error_type"],
)
# Saturation: Resource utilization
DB_POOL_USAGE = Gauge(
"db_connection_pool_used",
"Number of database connections in use",
)
```
Instrument your endpoints:
```python
import time
from functools import wraps
def track_request(func):
"""Decorator to track request metrics."""
@wraps(func)
async def wrapper(request: Request, *args, **kwargs):
method = request.method
endpoint = request.url.path
start = time.perf_counter()
try:
response = await func(request, *args, **kwargs)
status = str(response.status_code)
return response
except Exception as e:
status = "500"
ERROR_COUNT.labels(
method=method,
endpoint=endpoint,
error_type=type(e).__name__,
).inc()
raise
finally:
duration = time.perf_counter() - start
REQUEST_COUNT.labels(method=method, endpoint=endpoint, status=status).inc()
REQUEST_LATENCY.labels(method=method, endpoint=endpoint, status=status).observe(duration)
return wrapper
```
### Pattern 6: Bounded Cardinality
Avoid labels with unbounded values to prevent metric explosion.
```python
# BAD: User ID has potentially millions of values
REQUEST_COUNT.labels(method="GET", user_id=user.id) # Don't do this!
# GOOD: Bounded values only
REQUEST_COUNT.labels(method="GET", endpoint="/users", status="200")
# If you need per-user metrics, use a different approach:
# - Log the user_id and query logs
# - Use a separate analytics system
# - Bucket users by type/tier
REQUEST_COUNT.labels(
method="GET",
endpoint="/users",
user_tier="premium", # Bounded set of values
)
```
### Pattern 7: Timed Operations with Context Manager
Create a reusable timing context manager for operations.
```python
from contextlib import contextmanager
import time
import structlog
logger = structlog.get_logger()
@contextmanager
def timed_operation(name: str, **extra_fields):
"""Context manager for timing and logging operations."""
start = time.perf_counter()
logger.debug("Operation started", operation=name, **extra_fields)
try:
yield
except Exception as e:
elapsed_ms = (time.perf_counter() - start) * 1000
logger.error(
"Operation failed",
operation=name,
duration_ms=round(elapsed_ms, 2),
error=str(e),
**extra_fields,
)
raise
else:
elapsed_ms = (time.perf_counter() - start) * 1000
logger.info(
"Operation completed",
operation=name,
duration_ms=round(elapsed_ms, 2),
**extra_fields,
)
# Usage
with timed_operation("fetch_user_orders", user_id=user.id):
orders = await order_repository.get_by_user(user.id)
```
### Pattern 8: OpenTelemetry Tracing
Set up distributed tracing with OpenTelemetry.
**Note:** OpenTelemetry is actively evolving. Check the [official Python documentation](https://opentelemetry.io/docs/languages/python/) for the latest API patterns and best practices.
```python
from opentelemetry import trace
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import BatchSpanProcessor
from opentelemetry.exporter.otlp.proto.grpc.trace_exporter import OTLPSpanExporter
def configure_tracing(service_name: str, otlp_endpoint: str) -> None:
"""Configure OpenTelemetry tracing."""
provider = TracerProvider()
processor = BatchSpanProcessor(OTLPSpanExporter(endpoint=otlp_endpoint))
provider.add_span_processor(processor)
trace.set_tracer_provider(provider)
tracer = trace.get_tracer(__name__)
async def process_order(order_id: str) -> Order:
"""Process order with tracing."""
with tracer.start_as_current_span("process_order") as span:
span.set_attribute("order.id", order_id)
with tracer.start_as_current_span("validate_order"):
validate_order(order_id)
with tracer.start_as_current_span("charge_payment"):
charge_payment(order_id)
with tracer.start_as_current_span("send_confirmation"):
send_confirmation(order_id)
return order
```
## Best Practices Summary
1. **Use structured logging** - JSON logs with consistent fields
2. **Propagate correlation IDs** - Thread through all requests and logs
3. **Track the four golden signals** - Latency, traffic, errors, saturation
4. **Bound label cardinality** - Never use unbounded values as metric labels
5. **Log at appropriate levels** - Don't cry wolf with ERROR
6. **Include context** - User ID, request ID, operation name in logs
7. **Use context managers** - Consistent timing and error handling
8. **Separate concerns** - Observability code shouldn't pollute business logic
9. **Test your observability** - Verify logs and metrics in integration tests
10. **Set up alerts** - Metrics are useless without alerting
This skill provides practical Python observability patterns for structured logging, metrics, and distributed tracing to make production issues diagnosable without code redeploys. It focuses on consistent JSON logs, correlation ID propagation, Prometheus-compatible metrics, and OpenTelemetry traces to answer what, where, and why when incidents occur. The guidance is implementation-ready for web services and background workers.
It configures structlog for machine-readable logs and context propagation via contextvars for correlation IDs. It instruments request lifecycle metrics (latency, traffic, errors, saturation) with prometheus_client and provides decorators and context managers to time operations and emit metrics. For distributed tracing it outlines OpenTelemetry setup and span usage to connect spans across services.
What fields should every log include?
Include timestamp, log level, correlation_id, operation or endpoint, and a minimal set of business identifiers (user_tier, order_id when bounded). Keep fields consistent for queries.
How do I avoid metric cardinality explosions?
Only use labels with bounded value sets (HTTP method, endpoint, status). Never use user IDs or raw UUIDs as labels; log them instead or aggregate into buckets.
When should I use OpenTelemetry vs logs/metrics?
Use traces for request flow and timing across services, metrics for health and SLOs, and logs for detailed context. They complement each other; implement all three for robust observability.