home / skills / waynesutton / convexskills / convex-schema-validator
This skill defines and validates Convex database schemas with precise typing, index configurations, optional fields, unions, and migration strategies.
npx playbooks add skill waynesutton/convexskills --skill convex-schema-validatorReview the files below or copy the command above to add this skill to your agents.
---
name: convex-schema-validator
displayName: Convex Schema Validator
description: Defining and validating database schemas with proper typing, index configuration, optional fields, unions, and migration strategies for schema changes
version: 1.0.0
author: Convex
tags: [convex, schema, validation, typescript, indexes, migrations]
---
# Convex Schema Validator
Define and validate database schemas in Convex with proper typing, index configuration, optional fields, unions, and strategies for schema migrations.
## Documentation Sources
Before implementing, do not assume; fetch the latest documentation:
- Primary: https://docs.convex.dev/database/schemas
- Indexes: https://docs.convex.dev/database/indexes
- Data Types: https://docs.convex.dev/database/types
- For broader context: https://docs.convex.dev/llms.txt
## Instructions
### Basic Schema Definition
```typescript
// convex/schema.ts
import { defineSchema, defineTable } from "convex/server";
import { v } from "convex/values";
export default defineSchema({
users: defineTable({
name: v.string(),
email: v.string(),
avatarUrl: v.optional(v.string()),
createdAt: v.number(),
}),
tasks: defineTable({
title: v.string(),
description: v.optional(v.string()),
completed: v.boolean(),
userId: v.id("users"),
priority: v.union(
v.literal("low"),
v.literal("medium"),
v.literal("high")
),
}),
});
```
### Validator Types
| Validator | TypeScript Type | Example |
|-----------|----------------|---------|
| `v.string()` | `string` | `"hello"` |
| `v.number()` | `number` | `42`, `3.14` |
| `v.boolean()` | `boolean` | `true`, `false` |
| `v.null()` | `null` | `null` |
| `v.int64()` | `bigint` | `9007199254740993n` |
| `v.bytes()` | `ArrayBuffer` | Binary data |
| `v.id("table")` | `Id<"table">` | Document reference |
| `v.array(v)` | `T[]` | `[1, 2, 3]` |
| `v.object({})` | `{ ... }` | `{ name: "..." }` |
| `v.optional(v)` | `T \| undefined` | Optional field |
| `v.union(...)` | `T1 \| T2` | Multiple types |
| `v.literal(x)` | `"x"` | Exact value |
| `v.any()` | `any` | Any value |
| `v.record(k, v)` | `Record<K, V>` | Dynamic keys |
### Index Configuration
```typescript
export default defineSchema({
messages: defineTable({
channelId: v.id("channels"),
authorId: v.id("users"),
content: v.string(),
sentAt: v.number(),
})
// Single field index
.index("by_channel", ["channelId"])
// Compound index
.index("by_channel_and_author", ["channelId", "authorId"])
// Index for sorting
.index("by_channel_and_time", ["channelId", "sentAt"]),
// Full-text search index
articles: defineTable({
title: v.string(),
body: v.string(),
category: v.string(),
})
.searchIndex("search_content", {
searchField: "body",
filterFields: ["category"],
}),
});
```
### Complex Types
```typescript
export default defineSchema({
// Nested objects
profiles: defineTable({
userId: v.id("users"),
settings: v.object({
theme: v.union(v.literal("light"), v.literal("dark")),
notifications: v.object({
email: v.boolean(),
push: v.boolean(),
}),
}),
}),
// Arrays of objects
orders: defineTable({
customerId: v.id("users"),
items: v.array(v.object({
productId: v.id("products"),
quantity: v.number(),
price: v.number(),
})),
status: v.union(
v.literal("pending"),
v.literal("processing"),
v.literal("shipped"),
v.literal("delivered")
),
}),
// Record type for dynamic keys
analytics: defineTable({
date: v.string(),
metrics: v.record(v.string(), v.number()),
}),
});
```
### Discriminated Unions
```typescript
export default defineSchema({
events: defineTable(
v.union(
v.object({
type: v.literal("user_signup"),
userId: v.id("users"),
email: v.string(),
}),
v.object({
type: v.literal("purchase"),
userId: v.id("users"),
orderId: v.id("orders"),
amount: v.number(),
}),
v.object({
type: v.literal("page_view"),
sessionId: v.string(),
path: v.string(),
})
)
).index("by_type", ["type"]),
});
```
### Optional vs Nullable Fields
```typescript
export default defineSchema({
items: defineTable({
// Optional: field may not exist
description: v.optional(v.string()),
// Nullable: field exists but can be null
deletedAt: v.union(v.number(), v.null()),
// Optional and nullable
notes: v.optional(v.union(v.string(), v.null())),
}),
});
```
### Index Naming Convention
Always include all indexed fields in the index name:
```typescript
export default defineSchema({
posts: defineTable({
authorId: v.id("users"),
categoryId: v.id("categories"),
publishedAt: v.number(),
status: v.string(),
})
// Good: descriptive names
.index("by_author", ["authorId"])
.index("by_author_and_category", ["authorId", "categoryId"])
.index("by_category_and_status", ["categoryId", "status"])
.index("by_status_and_published", ["status", "publishedAt"]),
});
```
### Schema Migration Strategies
#### Adding New Fields
```typescript
// Before
users: defineTable({
name: v.string(),
email: v.string(),
})
// After - add as optional first
users: defineTable({
name: v.string(),
email: v.string(),
avatarUrl: v.optional(v.string()), // New optional field
})
```
#### Backfilling Data
```typescript
// convex/migrations.ts
import { internalMutation } from "./_generated/server";
import { v } from "convex/values";
export const backfillAvatars = internalMutation({
args: {},
returns: v.number(),
handler: async (ctx) => {
const users = await ctx.db
.query("users")
.filter((q) => q.eq(q.field("avatarUrl"), undefined))
.take(100);
for (const user of users) {
await ctx.db.patch(user._id, {
avatarUrl: `https://api.dicebear.com/7.x/initials/svg?seed=${user.name}`,
});
}
return users.length;
},
});
```
#### Making Optional Fields Required
```typescript
// Step 1: Backfill all null values
// Step 2: Update schema to required
users: defineTable({
name: v.string(),
email: v.string(),
avatarUrl: v.string(), // Now required after backfill
})
```
## Examples
### Complete E-commerce Schema
```typescript
// convex/schema.ts
import { defineSchema, defineTable } from "convex/server";
import { v } from "convex/values";
export default defineSchema({
users: defineTable({
email: v.string(),
name: v.string(),
role: v.union(v.literal("customer"), v.literal("admin")),
createdAt: v.number(),
})
.index("by_email", ["email"])
.index("by_role", ["role"]),
products: defineTable({
name: v.string(),
description: v.string(),
price: v.number(),
category: v.string(),
inventory: v.number(),
isActive: v.boolean(),
})
.index("by_category", ["category"])
.index("by_active_and_category", ["isActive", "category"])
.searchIndex("search_products", {
searchField: "name",
filterFields: ["category", "isActive"],
}),
orders: defineTable({
userId: v.id("users"),
items: v.array(v.object({
productId: v.id("products"),
quantity: v.number(),
priceAtPurchase: v.number(),
})),
total: v.number(),
status: v.union(
v.literal("pending"),
v.literal("paid"),
v.literal("shipped"),
v.literal("delivered"),
v.literal("cancelled")
),
shippingAddress: v.object({
street: v.string(),
city: v.string(),
state: v.string(),
zip: v.string(),
country: v.string(),
}),
createdAt: v.number(),
updatedAt: v.number(),
})
.index("by_user", ["userId"])
.index("by_user_and_status", ["userId", "status"])
.index("by_status", ["status"]),
reviews: defineTable({
productId: v.id("products"),
userId: v.id("users"),
rating: v.number(),
comment: v.optional(v.string()),
createdAt: v.number(),
})
.index("by_product", ["productId"])
.index("by_user", ["userId"]),
});
```
### Using Schema Types in Functions
```typescript
// convex/products.ts
import { query, mutation } from "./_generated/server";
import { v } from "convex/values";
import { Doc, Id } from "./_generated/dataModel";
// Use Doc type for full documents
type Product = Doc<"products">;
// Use Id type for references
type ProductId = Id<"products">;
export const get = query({
args: { productId: v.id("products") },
returns: v.union(
v.object({
_id: v.id("products"),
_creationTime: v.number(),
name: v.string(),
description: v.string(),
price: v.number(),
category: v.string(),
inventory: v.number(),
isActive: v.boolean(),
}),
v.null()
),
handler: async (ctx, args): Promise<Product | null> => {
return await ctx.db.get(args.productId);
},
});
```
## Best Practices
- Never run `npx convex deploy` unless explicitly instructed
- Never run any git commands unless explicitly instructed
- Always define explicit schemas rather than relying on inference
- Use descriptive index names that include all indexed fields
- Start with optional fields when adding new columns
- Use discriminated unions for polymorphic data
- Validate data at the schema level, not just in functions
- Plan index strategy based on query patterns
## Common Pitfalls
1. **Missing indexes for queries** - Every withIndex needs a corresponding schema index
2. **Wrong index field order** - Fields must be queried in order defined
3. **Using v.any() excessively** - Lose type safety benefits
4. **Not making new fields optional** - Breaks existing data
5. **Forgetting system fields** - _id and _creationTime are automatic
## References
- Convex Documentation: https://docs.convex.dev/
- Convex LLMs.txt: https://docs.convex.dev/llms.txt
- Schemas: https://docs.convex.dev/database/schemas
- Indexes: https://docs.convex.dev/database/indexes
- Data Types: https://docs.convex.dev/database/types
This skill helps define and validate Convex database schemas with correct typing, index configuration, optional fields, unions, and migration strategies. It focuses on producing explicit, production-ready schemas that prevent runtime errors and support predictable queries and migrations. The skill includes patterns for indexes, complex types, discriminated unions, and safe field changes.
The skill inspects schema definitions built with Convex validators (v.string(), v.id(), v.object(), v.union(), etc.) and checks typing, index declarations, and search indexes for consistency with query patterns. It flags common mistakes like missing or misordered indexes, overuse of v.any(), and unsafe nullable/required transitions. It also recommends migration steps (add optional fields, backfill, then require) and provides examples for backfill mutations and index naming.
How should I add a new required field without breaking existing data?
Add the field as optional, run a backfill mutation to populate values for all existing rows, then update the schema to make the field required.
What causes index-related query failures?
Common causes are missing schema indexes, wrong index field order, or querying fields not included in the index. Ensure every withIndex has a matching schema index and maintain defined field order.