home / skills / venkateshvenki404224 / frappe-apps-manager / frappe-report-generator
This skill helps you create and customize Frappe reports including query, script, and nocode builders for powerful data analysis.
npx playbooks add skill venkateshvenki404224/frappe-apps-manager --skill frappe-report-generatorReview the files below or copy the command above to add this skill to your agents.
---
name: frappe-report-generator
description: Generate custom reports, query reports, and script reports for Frappe applications. Use when creating data analysis and reporting features.
---
# Frappe Report Generator Skill
Create custom reports for data analysis, dashboards, and business intelligence in Frappe.
## When to Use This Skill
Claude should invoke this skill when:
- User wants to create custom reports
- User needs data analysis or aggregation
- User asks about query reports or script reports
- User wants to build dashboards
- User needs help with report formatting or filters
## Capabilities
### 1. Report Types
**Query Report (SQL-based):**
- Fast performance for large datasets
- Direct SQL queries
- Complex joins and aggregations
- Limited formatting options
**Script Report (Python-based):**
- Full Python flexibility
- Complex business logic
- Dynamic columns and formatting
- Access to Frappe ORM
**Report Builder (No-code):**
- User-configurable
- No coding required
- Basic aggregations
- Simple use cases
### 2. Query Report Structure
**Basic Query Report JSON:**
```json
{
"name": "Sales Analysis",
"report_name": "Sales Analysis",
"ref_doctype": "Sales Order",
"report_type": "Query Report",
"is_standard": "Yes",
"module": "Selling",
"disabled": 0,
"query": "",
"filters": [],
"columns": []
}
```
**Python File (sales_analysis.py):**
```python
import frappe
from frappe import _
def execute(filters=None):
columns = get_columns()
data = get_data(filters)
return columns, data
def get_columns():
return [
{
"fieldname": "sales_order",
"label": _("Sales Order"),
"fieldtype": "Link",
"options": "Sales Order",
"width": 150
},
{
"fieldname": "customer",
"label": _("Customer"),
"fieldtype": "Link",
"options": "Customer",
"width": 150
},
{
"fieldname": "posting_date",
"label": _("Date"),
"fieldtype": "Date",
"width": 100
},
{
"fieldname": "grand_total",
"label": _("Grand Total"),
"fieldtype": "Currency",
"width": 120
},
{
"fieldname": "status",
"label": _("Status"),
"fieldtype": "Data",
"width": 100
}
]
def get_data(filters):
conditions = get_conditions(filters)
query = f"""
SELECT
so.name as sales_order,
so.customer,
so.posting_date,
so.grand_total,
so.status
FROM
`tabSales Order` so
WHERE
so.docstatus = 1
{conditions}
ORDER BY
so.posting_date DESC
"""
return frappe.db.sql(query, filters, as_dict=1)
def get_conditions(filters):
conditions = []
if filters.get("customer"):
conditions.append("so.customer = %(customer)s")
if filters.get("from_date"):
conditions.append("so.posting_date >= %(from_date)s")
if filters.get("to_date"):
conditions.append("so.posting_date <= %(to_date)s")
if filters.get("status"):
conditions.append("so.status = %(status)s")
return " AND " + " AND ".join(conditions) if conditions else ""
```
### 3. Script Report Structure
**Advanced Script Report:**
```python
import frappe
from frappe import _
from frappe.utils import flt, getdate
def execute(filters=None):
columns = get_columns()
data = get_data(filters)
chart = get_chart_data(data)
report_summary = get_report_summary(data)
return columns, data, None, chart, report_summary
def get_columns():
return [
{
"fieldname": "customer",
"label": _("Customer"),
"fieldtype": "Link",
"options": "Customer",
"width": 150
},
{
"fieldname": "total_orders",
"label": _("Total Orders"),
"fieldtype": "Int",
"width": 100
},
{
"fieldname": "total_amount",
"label": _("Total Amount"),
"fieldtype": "Currency",
"width": 120
},
{
"fieldname": "avg_order_value",
"label": _("Avg Order Value"),
"fieldtype": "Currency",
"width": 120
}
]
def get_data(filters):
# Get sales orders
sales_orders = frappe.get_all(
"Sales Order",
filters={
"docstatus": 1,
"posting_date": ["between", [filters.get("from_date"), filters.get("to_date")]]
},
fields=["customer", "grand_total"]
)
# Aggregate by customer
customer_data = {}
for order in sales_orders:
customer = order.customer
if customer not in customer_data:
customer_data[customer] = {
"customer": customer,
"total_orders": 0,
"total_amount": 0
}
customer_data[customer]["total_orders"] += 1
customer_data[customer]["total_amount"] += flt(order.grand_total)
# Calculate averages
data = []
for customer, values in customer_data.items():
data.append({
"customer": customer,
"total_orders": values["total_orders"],
"total_amount": values["total_amount"],
"avg_order_value": values["total_amount"] / values["total_orders"]
})
return sorted(data, key=lambda x: x["total_amount"], reverse=True)
def get_chart_data(data):
"""Generate chart for report"""
if not data:
return None
labels = [d["customer"] for d in data[:10]] # Top 10
values = [d["total_amount"] for d in data[:10]]
return {
"data": {
"labels": labels,
"datasets": [
{
"name": "Total Sales",
"values": values
}
]
},
"type": "bar",
"colors": ["#7cd6fd"]
}
def get_report_summary(data):
"""Generate summary cards"""
if not data:
return []
total_customers = len(data)
total_revenue = sum(d["total_amount"] for d in data)
total_orders = sum(d["total_orders"] for d in data)
avg_order_value = total_revenue / total_orders if total_orders else 0
return [
{
"value": total_customers,
"label": "Total Customers",
"datatype": "Int"
},
{
"value": total_revenue,
"label": "Total Revenue",
"datatype": "Currency"
},
{
"value": total_orders,
"label": "Total Orders",
"datatype": "Int"
},
{
"value": avg_order_value,
"label": "Avg Order Value",
"datatype": "Currency"
}
]
```
### 4. Report Filters
**Filter Definition (JSON):**
```json
{
"filters": [
{
"fieldname": "customer",
"label": "Customer",
"fieldtype": "Link",
"options": "Customer"
},
{
"fieldname": "from_date",
"label": "From Date",
"fieldtype": "Date",
"default": "frappe.datetime.month_start()",
"reqd": 1
},
{
"fieldname": "to_date",
"label": "To Date",
"fieldtype": "Date",
"default": "frappe.datetime.month_end()",
"reqd": 1
},
{
"fieldname": "status",
"label": "Status",
"fieldtype": "Select",
"options": "\nDraft\nSubmitted\nCancelled",
"default": "Submitted"
}
]
}
```
### 5. Advanced Query Patterns
**Complex Joins:**
```python
def get_data(filters):
query = """
SELECT
so.name as sales_order,
so.customer,
c.customer_group,
c.territory,
so.posting_date,
SUM(soi.amount) as total_amount,
COUNT(soi.name) as total_items
FROM
`tabSales Order` so
INNER JOIN
`tabCustomer` c ON so.customer = c.name
INNER JOIN
`tabSales Order Item` soi ON soi.parent = so.name
WHERE
so.docstatus = 1
AND so.posting_date BETWEEN %(from_date)s AND %(to_date)s
GROUP BY
so.name
ORDER BY
total_amount DESC
"""
return frappe.db.sql(query, filters, as_dict=1)
```
**Aggregations:**
```python
def get_summary_data(filters):
query = """
SELECT
MONTH(posting_date) as month,
YEAR(posting_date) as year,
COUNT(name) as order_count,
SUM(grand_total) as total_sales,
AVG(grand_total) as avg_order_value,
MIN(grand_total) as min_order,
MAX(grand_total) as max_order
FROM
`tabSales Order`
WHERE
docstatus = 1
AND posting_date BETWEEN %(from_date)s AND %(to_date)s
GROUP BY
YEAR(posting_date), MONTH(posting_date)
ORDER BY
year DESC, month DESC
"""
return frappe.db.sql(query, filters, as_dict=1)
```
### 6. Dynamic Columns
```python
def get_columns():
"""Generate columns dynamically based on data"""
base_columns = [
{
"fieldname": "customer",
"label": _("Customer"),
"fieldtype": "Link",
"options": "Customer",
"width": 150
}
]
# Add month columns dynamically
months = ["Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]
for month in months:
base_columns.append({
"fieldname": month.lower(),
"label": _(month),
"fieldtype": "Currency",
"width": 100
})
base_columns.append({
"fieldname": "total",
"label": _("Total"),
"fieldtype": "Currency",
"width": 120
})
return base_columns
```
### 7. Report Formatting
**Conditional Formatting:**
```python
def get_data(filters):
data = # ... get data
for row in data:
# Add indicator
if row.grand_total > 100000:
row["indicator"] = "green"
elif row.grand_total > 50000:
row["indicator"] = "orange"
else:
row["indicator"] = "red"
return data
```
### 8. Export Features
Reports automatically support:
- Excel export
- PDF export
- CSV export
- Print view
### 9. Performance Optimization
**Use Indexes:**
```python
# Ensure proper indexes exist
# ALTER TABLE `tabSales Order` ADD INDEX idx_posting_date (posting_date);
# ALTER TABLE `tabSales Order` ADD INDEX idx_customer (customer);
```
**Limit Results:**
```python
def get_data(filters):
# Add LIMIT for large datasets
query = f"""
SELECT ...
FROM ...
WHERE ...
LIMIT 1000
"""
return frappe.db.sql(query, filters, as_dict=1)
```
**Use Query Caching:**
```python
def get_data(filters):
cache_key = f"sales_report_{filters.get('from_date')}_{filters.get('to_date')}"
data = frappe.cache().get_value(cache_key)
if data:
return data
data = frappe.db.sql(query, filters, as_dict=1)
frappe.cache().set_value(cache_key, data, expires_in_sec=300)
return data
```
### 10. Report Permissions
**Permission Query:**
```python
def get_data(filters):
# Only show data user has permission to see
if not frappe.has_permission("Sales Order", "read"):
frappe.throw(_("Not permitted"))
# Filter by user permissions
user_customers = frappe.get_list(
"Customer",
filters={"name": ["in", frappe.get_roles()]},
pluck="name"
)
if user_customers:
filters["customer"] = ["in", user_customers]
```
## File Structure
Reports should be organized as:
```
apps/<app_name>/<module>/report/<report_name>/
├── __init__.py
├── <report_name>.json
├── <report_name>.py
└── <report_name>.js (optional, for client-side customization)
```
## Best Practices
1. **Optimize queries** - Use proper indexes and LIMIT
2. **Filter early** - Apply filters in WHERE clause, not in Python
3. **Use parameterized queries** - Prevent SQL injection
4. **Cache when possible** - Cache expensive calculations
5. **Validate filters** - Always validate user inputs
6. **Handle permissions** - Check user permissions
7. **Provide defaults** - Set sensible default filters
8. **Document reports** - Add helpful descriptions
9. **Test with large data** - Ensure performance at scale
10. **Use chart/summary wisely** - Enhance user experience
## Testing Reports
Access reports at:
```
http://localhost:8000/app/query-report/Sales%20Analysis
```
Remember: This skill is model-invoked. Claude will use it autonomously when detecting report development tasks.
This skill generates custom query reports, script reports, and report-builder definitions for Frappe applications to support data analysis, dashboards, and exports. It provides ready-made patterns for SQL query reports, Python script reports, dynamic columns, charts and summary cards, plus performance and permission guidance. Use it to build production-ready reports with filters, exports, and client-side customization hooks.
The skill outputs report JSON and Python structures compatible with Frappe report conventions: report metadata, filter definitions, column schemas, and execute() implementations. For query reports it returns parameterized SQL and for script reports it returns Python logic that prepares columns, aggregated data, charts and summary cards. It also suggests indexing, caching and permission checks to ensure safe, high-performance reports.
Should I use a query report or a script report?
Use a query report for large datasets and straight SQL aggregations; choose a script report when you need complex business logic, dynamic columns, charts or ORM convenience.
How do I keep large reports performant?
Add proper DB indexes, limit result sets, push filtering into SQL, and use short-lived caching for expensive aggregations.