home / skills / vadimcomanescu / codex-skills / agents-llamaindex

This skill helps you leverage LlamaIndex to build retrieval-augmented generation apps, ingest data, and query private knowledge efficiently.

npx playbooks add skill vadimcomanescu/codex-skills --skill agents-llamaindex

Review the files below or copy the command above to add this skill to your agents.

Files (5)
SKILL.md
14.0 KB
---
name: agents-llamaindex
description: LlamaIndex framework for data-centric LLM apps and RAG. Use for document ingestion, indexing, querying, and building retrieval-driven chatbots or knowledge tools.
---

# LlamaIndex - Data Framework for LLM Applications

The leading framework for connecting LLMs with your data.

## When to use LlamaIndex

**Use LlamaIndex when:**
- Building RAG (retrieval-augmented generation) applications
- Need document question-answering over private data
- Ingesting data from multiple sources (300+ connectors)
- Creating knowledge bases for LLMs
- Building chatbots with enterprise data
- Need structured data extraction from documents

**Metrics**:
- **45,100+ GitHub stars**
- **23,000+ repositories** use LlamaIndex
- **300+ data connectors** (LlamaHub)
- **1,715+ contributors**
- **v0.14.7** (stable)

**Use alternatives instead**:
- **LangChain**: More general-purpose, better for agents
- **Haystack**: Production search pipelines
- **txtai**: Lightweight semantic search
- **Chroma**: Just need vector storage

## Quick start

### Installation

```bash
# Starter package (recommended)
pip install llama-index

# Or minimal core + specific integrations
pip install llama-index-core
pip install llama-index-llms-openai
pip install llama-index-embeddings-openai
```

### 5-line RAG example

```python
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader

# Load documents
documents = SimpleDirectoryReader("data").load_data()

# Create index
index = VectorStoreIndex.from_documents(documents)

# Query
query_engine = index.as_query_engine()
response = query_engine.query("What did the author do growing up?")
print(response)
```

## Core concepts

### 1. Data connectors - Load documents

```python
from llama_index.core import SimpleDirectoryReader, Document
from llama_index.readers.web import SimpleWebPageReader
from llama_index.readers.github import GithubRepositoryReader

# Directory of files
documents = SimpleDirectoryReader("./data").load_data()

# Web pages
reader = SimpleWebPageReader()
documents = reader.load_data(["https://example.com"])

# GitHub repository
reader = GithubRepositoryReader(owner="user", repo="repo")
documents = reader.load_data(branch="main")

# Manual document creation
doc = Document(
    text="This is the document content",
    metadata={"source": "manual", "date": "2025-01-01"}
)
```

### 2. Indices - Structure data

```python
from llama_index.core import VectorStoreIndex, ListIndex, TreeIndex

# Vector index (most common - semantic search)
vector_index = VectorStoreIndex.from_documents(documents)

# List index (sequential scan)
list_index = ListIndex.from_documents(documents)

# Tree index (hierarchical summary)
tree_index = TreeIndex.from_documents(documents)

# Save index
index.storage_context.persist(persist_dir="./storage")

# Load index
from llama_index.core import load_index_from_storage, StorageContext
storage_context = StorageContext.from_defaults(persist_dir="./storage")
index = load_index_from_storage(storage_context)
```

### 3. Query engines - Ask questions

```python
# Basic query
query_engine = index.as_query_engine()
response = query_engine.query("What is the main topic?")
print(response)

# Streaming response
query_engine = index.as_query_engine(streaming=True)
response = query_engine.query("Explain quantum computing")
for text in response.response_gen:
    print(text, end="", flush=True)

# Custom configuration
query_engine = index.as_query_engine(
    similarity_top_k=3,          # Return top 3 chunks
    response_mode="compact",     # Or "tree_summarize", "simple_summarize"
    verbose=True
)
```

### 4. Retrievers - Find relevant chunks

```python
# Vector retriever
retriever = index.as_retriever(similarity_top_k=5)
nodes = retriever.retrieve("machine learning")

# With filtering
retriever = index.as_retriever(
    similarity_top_k=3,
    filters={"metadata.category": "tutorial"}
)

# Custom retriever
from llama_index.core.retrievers import BaseRetriever

class CustomRetriever(BaseRetriever):
    def _retrieve(self, query_bundle):
        # Your custom retrieval logic
        return nodes
```

## Agents with tools

### Basic agent

```python
from llama_index.core.agent import FunctionAgent
from llama_index.llms.openai import OpenAI

# Define tools
def multiply(a: int, b: int) -> int:
    """Multiply two numbers."""
    return a * b

def add(a: int, b: int) -> int:
    """Add two numbers."""
    return a + b

# Create agent
llm = OpenAI(model="gpt-4o")
agent = FunctionAgent.from_tools(
    tools=[multiply, add],
    llm=llm,
    verbose=True
)

# Use agent
response = agent.chat("What is 25 * 17 + 142?")
print(response)
```

### RAG agent (document search + tools)

```python
from llama_index.core.tools import QueryEngineTool

# Create index as before
index = VectorStoreIndex.from_documents(documents)

# Wrap query engine as tool
query_tool = QueryEngineTool.from_defaults(
    query_engine=index.as_query_engine(),
    name="python_docs",
    description="Useful for answering questions about Python programming"
)

# Agent with document search + calculator
agent = FunctionAgent.from_tools(
    tools=[query_tool, multiply, add],
    llm=llm
)

# Agent decides when to search docs vs calculate
response = agent.chat("According to the docs, what is Python used for?")
```

## Advanced RAG patterns

### Chat engine (conversational)

```python
from llama_index.core.chat_engine import CondensePlusContextChatEngine

# Chat with memory
chat_engine = index.as_chat_engine(
    chat_mode="condense_plus_context",  # Or "context", "react"
    verbose=True
)

# Multi-turn conversation
response1 = chat_engine.chat("What is Python?")
response2 = chat_engine.chat("Can you give examples?")  # Remembers context
response3 = chat_engine.chat("What about web frameworks?")
```

### Metadata filtering

```python
from llama_index.core.vector_stores import MetadataFilters, ExactMatchFilter

# Filter by metadata
filters = MetadataFilters(
    filters=[
        ExactMatchFilter(key="category", value="tutorial"),
        ExactMatchFilter(key="difficulty", value="beginner")
    ]
)

retriever = index.as_retriever(
    similarity_top_k=3,
    filters=filters
)

query_engine = index.as_query_engine(filters=filters)
```

### Structured output

```python
from pydantic import BaseModel
from llama_index.core.output_parsers import PydanticOutputParser

class Summary(BaseModel):
    title: str
    main_points: list[str]
    conclusion: str

# Get structured response
output_parser = PydanticOutputParser(output_cls=Summary)
query_engine = index.as_query_engine(output_parser=output_parser)

response = query_engine.query("Summarize the document")
summary = response  # Pydantic model
print(summary.title, summary.main_points)
```

## Data ingestion patterns

### Multiple file types

```python
# Load all supported formats
documents = SimpleDirectoryReader(
    "./data",
    recursive=True,
    required_exts=[".pdf", ".docx", ".txt", ".md"]
).load_data()
```

### Web scraping

```python
from llama_index.readers.web import BeautifulSoupWebReader

reader = BeautifulSoupWebReader()
documents = reader.load_data(urls=[
    "https://docs.python.org/3/tutorial/",
    "https://docs.python.org/3/library/"
])
```

### Database

```python
from llama_index.readers.database import DatabaseReader

reader = DatabaseReader(
    sql_database_uri="postgresql://user:pass@localhost/db"
)
documents = reader.load_data(query="SELECT * FROM articles")
```

### API endpoints

```python
from llama_index.readers.json import JSONReader

reader = JSONReader()
documents = reader.load_data("https://api.example.com/data.json")
```

## Vector store integrations

### Chroma (local)

```python
from llama_index.vector_stores.chroma import ChromaVectorStore
import chromadb

# Initialize Chroma
db = chromadb.PersistentClient(path="./chroma_db")
collection = db.get_or_create_collection("my_collection")

# Create vector store
vector_store = ChromaVectorStore(chroma_collection=collection)

# Use in index
from llama_index.core import StorageContext
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(documents, storage_context=storage_context)
```

### Pinecone (cloud)

```python
from llama_index.vector_stores.pinecone import PineconeVectorStore
import pinecone

# Initialize Pinecone
pinecone.init(api_key="your-key", environment="us-west1-gcp")
pinecone_index = pinecone.Index("my-index")

# Create vector store
vector_store = PineconeVectorStore(pinecone_index=pinecone_index)
storage_context = StorageContext.from_defaults(vector_store=vector_store)

index = VectorStoreIndex.from_documents(documents, storage_context=storage_context)
```

### FAISS (fast)

```python
from llama_index.vector_stores.faiss import FaissVectorStore
import faiss

# Create FAISS index
d = 1536  # Dimension of embeddings
faiss_index = faiss.IndexFlatL2(d)

vector_store = FaissVectorStore(faiss_index=faiss_index)
storage_context = StorageContext.from_defaults(vector_store=vector_store)

index = VectorStoreIndex.from_documents(documents, storage_context=storage_context)
```

## Customization

### Custom LLM

```python
from llama_index.llms.anthropic import Anthropic
from llama_index.core import Settings

# Set global LLM
Settings.llm = Anthropic(model="claude-sonnet-4-5-20250929")

# Now all queries use Anthropic
query_engine = index.as_query_engine()
```

### Custom embeddings

```python
from llama_index.embeddings.huggingface import HuggingFaceEmbedding

# Use HuggingFace embeddings
Settings.embed_model = HuggingFaceEmbedding(
    model_name="sentence-transformers/all-mpnet-base-v2"
)

index = VectorStoreIndex.from_documents(documents)
```

### Custom prompt templates

```python
from llama_index.core import PromptTemplate

qa_prompt = PromptTemplate(
    "Context: {context_str}\n"
    "Question: {query_str}\n"
    "Answer the question based only on the context. "
    "If the answer is not in the context, say 'I don't know'.\n"
    "Answer: "
)

query_engine = index.as_query_engine(text_qa_template=qa_prompt)
```

## Multi-modal RAG

### Image + text

```python
from llama_index.core import SimpleDirectoryReader
from llama_index.multi_modal_llms.openai import OpenAIMultiModal

# Load images and documents
documents = SimpleDirectoryReader(
    "./data",
    required_exts=[".jpg", ".png", ".pdf"]
).load_data()

# Multi-modal index
index = VectorStoreIndex.from_documents(documents)

# Query with multi-modal LLM
multi_modal_llm = OpenAIMultiModal(model="gpt-4o")
query_engine = index.as_query_engine(llm=multi_modal_llm)

response = query_engine.query("What is in the diagram on page 3?")
```

## Evaluation

### Response quality

```python
from llama_index.core.evaluation import RelevancyEvaluator, FaithfulnessEvaluator

# Evaluate relevance
relevancy = RelevancyEvaluator()
result = relevancy.evaluate_response(
    query="What is Python?",
    response=response
)
print(f"Relevancy: {result.passing}")

# Evaluate faithfulness (no hallucination)
faithfulness = FaithfulnessEvaluator()
result = faithfulness.evaluate_response(
    query="What is Python?",
    response=response
)
print(f"Faithfulness: {result.passing}")
```

## Best practices

1. **Use vector indices for most cases** - Best performance
2. **Save indices to disk** - Avoid re-indexing
3. **Chunk documents properly** - 512-1024 tokens optimal
4. **Add metadata** - Enables filtering and tracking
5. **Use streaming** - Better UX for long responses
6. **Enable verbose during dev** - See retrieval process
7. **Evaluate responses** - Check relevance and faithfulness
8. **Use chat engine for conversations** - Built-in memory
9. **Persist storage** - Don't lose your index
10. **Monitor costs** - Track embedding and LLM usage

## Common patterns

### Document Q&A system

```python
# Complete RAG pipeline
documents = SimpleDirectoryReader("docs").load_data()
index = VectorStoreIndex.from_documents(documents)
index.storage_context.persist(persist_dir="./storage")

# Query
query_engine = index.as_query_engine(
    similarity_top_k=3,
    response_mode="compact",
    verbose=True
)
response = query_engine.query("What is the main topic?")
print(response)
print(f"Sources: {[node.metadata['file_name'] for node in response.source_nodes]}")
```

### Chatbot with memory

```python
# Conversational interface
chat_engine = index.as_chat_engine(
    chat_mode="condense_plus_context",
    verbose=True
)

# Multi-turn chat
while True:
    user_input = input("You: ")
    if user_input.lower() == "quit":
        break
    response = chat_engine.chat(user_input)
    print(f"Bot: {response}")
```

## Performance benchmarks

| Operation | Latency | Notes |
|-----------|---------|-------|
| Index 100 docs | ~10-30s | One-time, can persist |
| Query (vector) | ~0.5-2s | Retrieval + LLM |
| Streaming query | ~0.5s first token | Better UX |
| Agent with tools | ~3-8s | Multiple tool calls |

## LlamaIndex vs LangChain

| Feature | LlamaIndex | LangChain |
|---------|------------|-----------|
| **Best for** | RAG, document Q&A | Agents, general LLM apps |
| **Data connectors** | 300+ (LlamaHub) | 100+ |
| **RAG focus** | Core feature | One of many |
| **Learning curve** | Easier for RAG | Steeper |
| **Customization** | High | Very high |
| **Documentation** | Excellent | Good |

**Use LlamaIndex when:**
- Your primary use case is RAG
- Need many data connectors
- Want simpler API for document Q&A
- Building knowledge retrieval system

**Use LangChain when:**
- Building complex agents
- Need more general-purpose tools
- Want more flexibility
- Complex multi-step workflows

## References

- **[Query Engines Guide](references/query_engines.md)** - Query modes, customization, streaming
- **[Agents Guide](references/agents.md)** - Tool creation, RAG agents, multi-step reasoning
- **[Data Connectors Guide](references/data_connectors.md)** - 300+ connectors, custom loaders

## Resources

- **GitHub**: https://github.com/run-llama/llama_index ⭐ 45,100+
- **Docs**: https://developers.llamaindex.ai/python/framework/
- **LlamaHub**: https://llamahub.ai (data connectors)
- **LlamaCloud**: https://cloud.llamaindex.ai (enterprise)
- **Discord**: https://discord.gg/dGcwcsnxhU
- **Version**: 0.14.7+
- **License**: MIT

Overview

This skill exposes the LlamaIndex framework for building data-centric LLM applications and retrieval-augmented generation (RAG) workflows. It provides tools for document ingestion, indexing, querying, and composing retrieval-driven chatbots or agents that combine document search with tool calls. Use it to turn files, databases, web pages, and APIs into searchable knowledge bases for LLMs.

How this skill works

The skill ingests data via 300+ connectors (files, web, databases, APIs) and creates indices (vector, list, tree) to structure content for semantic search. Query engines and retrievers find relevant chunks, and optional chat engines provide multi-turn conversational memory. Agents can wrap query engines as tools and combine document search with custom functions or calculators for hybrid RAG agents.

When to use it

  • Building RAG applications or document question-answering over private data
  • Creating knowledge bases or search-driven chatbots from heterogeneous sources
  • Ingesting many file types, web pages, databases, or API endpoints
  • Needing structured outputs (Pydantic) or metadata-filtered retrieval
  • Combining document search with tools in an agent for decision logic

Best practices

  • Use vector indices for most semantic search use cases and persist storage to avoid re-indexing
  • Chunk documents into ~512–1024 token pieces and add metadata for filtering and traceability
  • Evaluate responses for relevance and faithfulness to detect hallucinations
  • Enable streaming for better UX on long responses and verbose mode during development
  • Choose an appropriate vector store (Chroma, Pinecone, FAISS) based on scale and latency

Example use cases

  • Document Q&A system: index internal docs and answer user questions with source attribution
  • Conversational chatbot with memory: multi-turn support using chat_engine (condense_plus_context)
  • RAG agent: wrap a query engine as a tool and combine with calculation or lookup functions
  • Multi-modal retrieval: ingest images and text to answer questions about diagrams or scanned pages
  • Evaluation pipelines: run relevancy and faithfulness evaluators to benchmark responses

FAQ

When should I prefer LlamaIndex over LangChain?

Prefer LlamaIndex when your primary goal is RAG or document-centric QA with many data connectors and a simple API for indexing and querying. Choose LangChain for general-purpose agents and complex multi-step workflows.

How do I reduce cost when using embeddings and LLMs?

Persist indices to avoid re-indexing, tune chunk size and similarity_top_k, cache embeddings when possible, and evaluate cheaper embedding/LLM models for non-critical queries.