home / skills / terrylica / cc-skills / ml-data-pipeline-architecture
This skill helps optimize ML data pipelines by choosing Polars, Arrow, and ClickHouse patterns for memory-efficient, lazy, zero-copy processing.
npx playbooks add skill terrylica/cc-skills --skill ml-data-pipeline-architectureReview the files below or copy the command above to add this skill to your agents.
---
name: ml-data-pipeline-architecture
description: Patterns for efficient ML data pipelines using Polars, Arrow, and ClickHouse. TRIGGERS - data pipeline, polars vs pandas, arrow format, clickhouse ml, efficient loading, zero-copy, memory optimization.
---
# ML Data Pipeline Architecture
Patterns for efficient ML data pipelines using Polars, Arrow, and ClickHouse.
**ADR**: [2026-01-22-polars-preference-hook](/docs/adr/2026-01-22-polars-preference-hook.md) (efficiency preferences framework)
> **Note**: A PreToolUse hook enforces Polars preference. To use Pandas, add `# polars-exception: <reason>` at file top.
## When to Use This Skill
Use this skill when:
- Deciding between Polars and Pandas for a data pipeline
- Optimizing memory usage with zero-copy Arrow patterns
- Loading data from ClickHouse into PyTorch DataLoaders
- Implementing lazy evaluation for large datasets
- Migrating existing Pandas code to Polars
---
## 1. Decision Tree: Polars vs Pandas
```
Dataset size?
├─ < 1M rows → Pandas OK (simpler API, richer ecosystem)
├─ 1M-10M rows → Consider Polars (2-5x faster, less memory)
└─ > 10M rows → Use Polars (required for memory efficiency)
Operations?
├─ Simple transforms → Either works
├─ Group-by aggregations → Polars 5-10x faster
├─ Complex joins → Polars with lazy evaluation
└─ Streaming/chunked → Polars scan_* functions
Integration?
├─ scikit-learn heavy → Pandas (better interop)
├─ PyTorch/custom → Polars + Arrow (zero-copy to tensor)
└─ ClickHouse source → Arrow stream → Polars (optimal)
```
---
## 2. Zero-Copy Pipeline Architecture
### The Problem with Pandas
```python
# BAD: 3 memory copies
df = pd.read_sql(query, conn) # Copy 1: DB → pandas
X = df[features].values # Copy 2: pandas → numpy
tensor = torch.from_numpy(X) # Copy 3: numpy → tensor
# Peak memory: 3x data size
```
### The Solution with Arrow
```python
# GOOD: 0-1 memory copies
import clickhouse_connect
import polars as pl
import torch
client = clickhouse_connect.get_client(...)
arrow_table = client.query_arrow("SELECT * FROM bars") # Arrow in DB memory
df = pl.from_arrow(arrow_table) # Zero-copy view
X = df.select(features).to_numpy() # Single allocation
tensor = torch.from_numpy(X) # View (no copy)
# Peak memory: 1.2x data size
```
---
## 3. ClickHouse Integration Patterns
### Pattern A: Arrow Stream (Recommended)
```python
def query_arrow(client, query: str) -> pl.DataFrame:
"""ClickHouse → Arrow → Polars (zero-copy chain)."""
arrow_table = client.query_arrow(f"{query} FORMAT ArrowStream")
return pl.from_arrow(arrow_table)
# Usage
df = query_arrow(client, "SELECT * FROM bars WHERE ts >= '2024-01-01'")
```
### Pattern B: Polars Native (Simpler)
```python
# Polars has native ClickHouse support (see pola.rs for version requirements)
df = pl.read_database_uri(
query="SELECT * FROM bars",
uri="clickhouse://user:pass@host/db"
)
```
### Pattern C: Parquet Export (Batch Jobs)
```python
# For reproducible batch processing
client.query("SELECT * FROM bars INTO OUTFILE 'data.parquet' FORMAT Parquet")
df = pl.scan_parquet("data.parquet") # Lazy, memory-mapped
```
---
## 4. PyTorch DataLoader Integration
### Minimal Change Pattern
```python
from torch.utils.data import TensorDataset, DataLoader
# Accept both pandas and polars
def prepare_data(df) -> tuple[torch.Tensor, torch.Tensor]:
if isinstance(df, pd.DataFrame):
df = pl.from_pandas(df)
X = df.select(features).to_numpy()
y = df.select(target).to_numpy()
return (
torch.from_numpy(X).float(),
torch.from_numpy(y).float()
)
X, y = prepare_data(df)
dataset = TensorDataset(X, y)
loader = DataLoader(dataset, batch_size=32, pin_memory=True)
```
### Custom PolarsDataset (Large Data)
```python
class PolarsDataset(torch.utils.data.Dataset):
"""Memory-efficient dataset from Polars DataFrame."""
def __init__(self, df: pl.DataFrame, features: list[str], target: str):
self.arrow = df.to_arrow() # Arrow backing for zero-copy slicing
self.features = features
self.target = target
def __len__(self) -> int:
return self.arrow.num_rows
def __getitem__(self, idx: int) -> tuple[torch.Tensor, torch.Tensor]:
row = self.arrow.slice(idx, 1)
x = torch.tensor([row[f][0].as_py() for f in self.features], dtype=torch.float32)
y = torch.tensor(row[self.target][0].as_py(), dtype=torch.float32)
return x, y
```
---
## 5. Lazy Evaluation Patterns
### Pipeline Composition
```python
# Define transformations lazily (no computation yet)
pipeline = (
pl.scan_parquet("raw_data.parquet")
.filter(pl.col("timestamp") >= start_date)
.with_columns([
(pl.col("close").pct_change()).alias("returns"),
(pl.col("volume").log()).alias("log_volume"),
])
.select(features + [target])
)
# Execute only when needed
train_df = pipeline.filter(pl.col("timestamp") < split_date).collect()
test_df = pipeline.filter(pl.col("timestamp") >= split_date).collect()
```
### Streaming for Large Files
```python
# Process file in chunks (never loads full file)
def process_large_file(path: str, chunk_size: int = 100_000):
reader = pl.scan_parquet(path)
for batch in reader.iter_batches(n_rows=chunk_size):
# Process each chunk
features = compute_features(batch)
yield features.to_numpy()
```
---
## 6. Schema Validation
### Pydantic for Config
```python
from pydantic import BaseModel, field_validator
class FeatureConfig(BaseModel):
features: list[str]
target: str
seq_len: int = 15
@field_validator("features")
@classmethod
def validate_features(cls, v):
required = {"returns_vs", "momentum_z", "atr_pct"}
missing = required - set(v)
if missing:
raise ValueError(f"Missing required features: {missing}")
return v
```
### DataFrame Schema Validation
```python
def validate_schema(df: pl.DataFrame, required: list[str], stage: str) -> None:
"""Fail-fast schema validation."""
missing = [c for c in required if c not in df.columns]
if missing:
raise ValueError(
f"[{stage}] Missing columns: {missing}\n"
f"Available: {sorted(df.columns)}"
)
```
---
## 7. Performance Benchmarks
| Operation | Pandas | Polars | Speedup |
| -------------- | ------ | ------ | ------- |
| Read CSV (1GB) | 45s | 4s | 11x |
| Filter rows | 2.1s | 0.4s | 5x |
| Group-by agg | 3.8s | 0.3s | 13x |
| Sort | 5.2s | 0.4s | 13x |
| Memory peak | 10GB | 2.5GB | 4x |
_Benchmark: 50M rows, 20 columns, MacBook M2_
---
## 8. Migration Checklist
### Phase 1: Add Arrow Support
- [ ] Add `polars = "<version>"` to dependencies (see [PyPI](https://pypi.org/project/polars/))
- [ ] Implement `query_arrow()` in data client
- [ ] Verify zero-copy with memory profiler
### Phase 2: Polars at Entry Points
- [ ] Add `pl.from_pandas()` wrapper at trainer entry
- [ ] Update `prepare_sequences()` to accept both types
- [ ] Add schema validation after conversion
### Phase 3: Full Lazy Evaluation
- [ ] Convert file reads to `pl.scan_*`
- [ ] Compose transformations lazily
- [ ] Call `.collect()` only before `.to_numpy()`
---
## 9. Anti-Patterns to Avoid
### DON'T: Mix APIs Unnecessarily
```python
# BAD: Convert back and forth
df_polars = pl.from_pandas(df_pandas)
df_pandas_again = df_polars.to_pandas() # Why?
```
### DON'T: Collect Too Early
```python
# BAD: Defeats lazy evaluation
df = pl.scan_parquet("data.parquet").collect() # Full load
filtered = df.filter(...) # After the fact
# GOOD: Filter before collect
df = pl.scan_parquet("data.parquet").filter(...).collect()
```
### DON'T: Ignore Memory Pressure
```python
# BAD: Loads entire file
df = pl.read_parquet("huge_file.parquet")
# GOOD: Stream in chunks
for batch in pl.scan_parquet("huge_file.parquet").iter_batches():
process(batch)
```
---
## References
- [Polars User Guide](https://docs.pola.rs/)
- [Polars Migration Guide](https://docs.pola.rs/user-guide/migration/pandas/)
- [Apache Arrow Python](https://arrow.apache.org/docs/python/)
- [ClickHouse Python Client](https://clickhouse.com/docs/integrations/python)
- [PyTorch Data Loading](https://pytorch.org/tutorials/beginner/data_loading_tutorial.html)
- [Polars Preference Hook ADR](/docs/adr/2026-01-22-polars-preference-hook.md)
---
## Troubleshooting
| Issue | Cause | Solution |
| --------------------------- | -------------------------------- | ---------------------------------------------------- |
| Memory spike during load | Collecting too early | Use lazy evaluation, call collect() only when needed |
| Arrow conversion fails | Unsupported data type | Check for object columns, convert to native types |
| ClickHouse connection error | Wrong port or credentials | Verify host:8123 (HTTP) or host:9000 (native) |
| Zero-copy not working | Intermediate pandas conversion | Remove to_pandas() calls, stay in Arrow/Polars |
| Polars hook blocking code | Pandas used without exception | Add `# polars-exception: reason` comment at file top |
| Slow group-by operations | Using pandas for large datasets | Migrate to Polars for 5-10x speedup |
| Schema validation failure | Column names case-sensitive | Verify exact column names from source |
| PyTorch DataLoader OOM | Loading full dataset into memory | Use PolarsDataset with Arrow backing for lazy access |
| Parquet scan performance | Not using predicate pushdown | Add filters before collect() for lazy evaluation |
| Type mismatch in tensor | Float64 vs Float32 mismatch | Explicitly cast with .cast(pl.Float32) before numpy |
This skill captures proven architecture patterns for efficient ML data pipelines using Polars, Apache Arrow, and ClickHouse. It explains decision criteria, zero-copy data flows, lazy evaluation, and scalable PyTorch integration to reduce memory use and speed up ETL and training. The guidance is practical, migration-ready, and focused on production constraints.
I describe when to prefer Polars over Pandas and how to wire Arrow-backed transfers from ClickHouse into Polars for minimal copies. The patterns include Arrow stream ingestion, lazy scan APIs, Parquet batch flows, and a memory-efficient bridge into PyTorch DataLoaders. I also cover schema validation, benchmarks, migration steps, and anti-patterns to avoid common traps.
When should I still use Pandas?
Use Pandas for small datasets (<1M rows), or when you rely on a Pandas-only ecosystem like certain scikit-learn utilities.
How do I ensure zero-copy from ClickHouse to tensors?
Stream results as Arrow, convert to Polars with pl.from_arrow, select features and call .to_numpy() then torch.from_numpy() to avoid intermediate copies.
What are the common causes of Arrow conversion failures?
Unsupported object-typed columns or mixed types; convert those columns to native types before Arrow serialization.