home / skills / terrylica / cc-skills / backtesting-py-oracle
This skill ensures backtesting.py and SQL results align for range bar patterns by configuring hedging, multi-position, and oracle validation.
npx playbooks add skill terrylica/cc-skills --skill backtesting-py-oracleReview the files below or copy the command above to add this skill to your agents.
---
name: backtesting-py-oracle
description: backtesting.py configuration for SQL oracle validation and range bar pattern backtesting. Use when running backtesting.py against ClickHouse SQL results, configuring Backtest() constructor, handling overlapping trades, multi-position mode, rolling quantile NaN handling, trade sorting, or oracle gate validation. TRIGGERS - backtesting.py, Backtest(), hedging, exclusive_orders, multi-position, overlapping trades, oracle validation, SQL vs Python, trade comparison, entry price mismatch, signal count mismatch, rolling quantile NaN, ExitTime sort, stats._trades, gen600_strategy, champion_strategy, gen300_strategy, barrier setup.
---
# backtesting.py Oracle Validation for Range Bar Patterns
Configuration and anti-patterns for using backtesting.py to validate ClickHouse SQL sweep results. Ensures bit-atomic replicability between SQL and Python trade evaluation.
**Companion skills**: `clickhouse-antipatterns` (SQL correctness, AP-16) | `sweep-methodology` (sweep design) | `rangebar-eval-metrics` (evaluation metrics)
**Validated**: Gen600 oracle verification (2026-02-12) — 3 assets, 5 gates, ALL PASS.
---
## Critical Configuration (NEVER omit)
```python
from backtesting import Backtest
bt = Backtest(
df,
Strategy,
cash=100_000,
commission=0,
hedging=True, # REQUIRED: Multiple concurrent positions
exclusive_orders=False, # REQUIRED: Don't auto-close on new signal
)
```
**Why**: SQL evaluates each signal independently (overlapping trades allowed). Without `hedging=True`, backtesting.py skips signals while a position is open, producing fewer trades than SQL. This was discovered when SOLUSDT produced 105 Python trades vs 121 SQL trades — 16 signals were silently skipped.
---
## Anti-Patterns (Ordered by Severity)
### BP-01: Missing Multi-Position Mode (CRITICAL)
**Symptom**: Python produces fewer trades than SQL. Gate 1 (signal count) fails.
**Root Cause**: Default `exclusive_orders=True` prevents opening new positions while one is active.
**Fix**: Always use `hedging=True, exclusive_orders=False`.
### BP-02: ExitTime Sort Order (CRITICAL)
**Symptom**: Entry prices appear mismatched (Gate 3 fails) even though both SQL and Python use the same price source.
**Root Cause**: `stats._trades` is sorted by ExitTime, not EntryTime. When overlapping trades exit in a different order than they entered, trade[i] no longer maps to signal[i].
**Fix**:
```python
trades = stats._trades.sort_values("EntryTime").reset_index(drop=True)
```
### BP-03: NaN Poisoning in Rolling Quantile (CRITICAL)
**Symptom**: Cross-asset tests fail with far fewer Python trades. Feature quantile becomes NaN and propagates forward indefinitely.
**Root Cause**: `np.percentile` with NaN inputs returns NaN. If even one NaN feature value enters the rolling window, all subsequent quantiles become NaN, making all subsequent filter comparisons fail.
**Fix**: Skip NaN values when building the signal window:
```python
def _rolling_quantile_on_signals(feature_arr, is_signal_arr, quantile_pct, window=1000):
result = np.full(len(feature_arr), np.nan)
signal_values = []
for i in range(len(feature_arr)):
if is_signal_arr[i]:
if len(signal_values) > 0:
window_data = signal_values[-window:]
result[i] = np.percentile(window_data, quantile_pct * 100)
# Only append non-NaN values (matches SQL quantileExactExclusive NULL handling)
if not np.isnan(feature_arr[i]):
signal_values.append(feature_arr[i])
return result
```
### BP-04: Data Range Mismatch (MODERATE)
**Symptom**: Different signal counts between SQL and Python for assets with early data (BNB, XRP).
**Root Cause**: `load_range_bars()` defaults to `start='2020-01-01'` but SQL has no lower bound.
**Fix**: Always pass `start='2017-01-01'` to cover all available data.
### BP-05: Margin Exhaustion with Overlapping Positions (MODERATE)
**Symptom**: Orders canceled with insufficient margin. Fewer trades than expected.
**Root Cause**: With `hedging=True` and default full-equity sizing, overlapping positions exhaust available margin.
**Fix**: Use fixed fractional sizing:
```python
self.buy(size=0.01) # 1% equity per trade
```
### BP-06: Signal Timestamp vs Entry Timestamp (LOW)
**Symptom**: Gate 2 (timestamp match) fails because SQL uses signal bar timestamps while Python uses entry bar timestamps.
**Root Cause**: SQL outputs the signal detection bar's `timestamp_ms`. Python's `EntryTime` is the fill bar (next bar after signal). These differ by 1 bar.
**Fix**: Record signal bar timestamps in the strategy's `next()` method:
```python
# Before calling self.buy()
self._signal_timestamps.append(int(self.data.index[-1].timestamp() * 1000))
```
---
## 5-Gate Oracle Validation Framework
| Gate | Metric | Threshold | What it catches |
| ---- | --------------- | --------- | ------------------------------------ |
| 1 | Signal Count | <5% diff | Missing signals, filter misalignment |
| 2 | Timestamp Match | >95% | Timing offset, warmup differences |
| 3 | Entry Price | >95% | Price source mismatch, sort ordering |
| 4 | Exit Type | >90% | Barrier logic differences |
| 5 | Kelly Fraction | <0.02 | Aggregate outcome alignment |
**Expected residual**: 1-2 exit type mismatches per asset at TIME barrier boundary (bar 50). SQL uses `fwd_closes[max_bars]`, backtesting.py closes at current bar price. Impact on Kelly < 0.006.
---
## Strategy Architecture: Single vs Multi-Position
| Mode | Constructor | Use Case | Position Sizing |
| --------------- | -------------------------------------- | --------------------- | ------------------------------ |
| Single-position | `hedging=False` (default) | Champion 1-bar hold | Full equity |
| Multi-position | `hedging=True, exclusive_orders=False` | SQL oracle validation | Fixed fractional (`size=0.01`) |
### Multi-Position Strategy Template
```python
class Gen600Strategy(Strategy):
def next(self):
current_bar = len(self.data) - 1
# 1. Register newly filled trades and set barriers
for trade in self.trades:
tid = id(trade)
if tid not in self._known_trades:
self._known_trades.add(tid)
self._trade_entry_bar[tid] = current_bar
actual_entry = trade.entry_price
if self.tp_mult > 0:
trade.tp = actual_entry * (1.0 + self.tp_mult * self.threshold_pct)
if self.sl_mult > 0:
trade.sl = actual_entry * (1.0 - self.sl_mult * self.threshold_pct)
# 2. Check time barrier for each open trade
for trade in list(self.trades):
tid = id(trade)
entry_bar = self._trade_entry_bar.get(tid, current_bar)
if self.max_bars > 0 and (current_bar - entry_bar) >= self.max_bars:
trade.close()
self._trade_entry_bar.pop(tid, None)
# 3. Check for new signal (no position guard — overlapping allowed)
if self._is_signal[current_bar]:
self.buy(size=0.01)
```
---
## Data Loading
```python
from data_loader import load_range_bars
df = load_range_bars(
symbol="SOLUSDT",
threshold=1000,
start="2017-01-01", # Cover all available data
end="2025-02-05", # Match SQL cutoff
extra_columns=["volume_per_trade", "lookback_price_range"], # Gen600 features
)
```
---
## Project Artifacts (rangebar-patterns repo)
| Artifact | Path |
| --------------------------- | ------------------------------------------------- |
| Oracle comparison script | `scripts/gen600_oracle_compare.py` |
| Gen600 strategy (reference) | `backtest/backtesting_py/gen600_strategy.py` |
| SQL oracle query template | `sql/gen600_oracle_trades.sql` |
| Oracle validation findings | `findings/2026-02-12-gen600-oracle-validation.md` |
| Backtest CLAUDE.md | `backtest/CLAUDE.md` |
| ClickHouse AP-16 | `.claude/skills/clickhouse-antipatterns/SKILL.md` |
| Fork source | `~/fork-tools/backtesting.py/` |
This skill provides a hardened backtesting.py configuration and checklist for validating ClickHouse SQL oracle results and range-bar pattern backtests. It codifies required constructor flags, common anti-patterns, and deterministic fixes so Python trade output matches SQL sweep results. Use it to run reproducible, bit-atomic comparisons between SQL-generated signals and backtesting.py trades.
The skill inspects backtesting.py runtime configuration, trade sorting, rolling-quantile signal generation, and strategy sizing to detect divergences from SQL oracle outputs. It enforces hedging and non-exclusive orders, prescribes EntryTime sorting of trades, and supplies NaN-safe rolling-quantile logic and data-range defaults. It also outlines a multi-position strategy template that mirrors SQL behavior for overlapping signals.
Why must hedging be enabled?
SQL evaluates signals independently and allows overlapping trades. Backtesting.py default behavior blocks new positions while a position is open. hedging=True and exclusive_orders=False reproduce SQL signal handling.
How do I fix entry price mismatches?
stats._trades is sorted by ExitTime by default. Re-sort trades by EntryTime (stats._trades.sort_values('EntryTime')) so trade[i] maps to the same signal[i].