home / skills / terrylica / cc-skills / asciinema-analyzer
This skill performs semantic analysis of asciinema transcripts to quickly extract keywords, topics, and patterns for documentation and review.
npx playbooks add skill terrylica/cc-skills --skill asciinema-analyzerReview the files below or copy the command above to add this skill to your agents.
---
name: asciinema-analyzer
description: Semantic analysis of asciinema recordings. TRIGGERS - analyze cast, keyword extraction, find patterns in recordings.
allowed-tools: Read, Bash, Grep, Glob, AskUserQuestion
---
# asciinema-analyzer
Semantic analysis of converted .txt recordings for Claude Code consumption. Uses tiered analysis: ripgrep (primary, 50-200ms) -> YAKE (secondary, 1-5s) -> TF-IDF (optional).
> **Platform**: macOS, Linux (requires ripgrep, optional YAKE)
## When to Use This Skill
Use this skill when:
- Searching for keywords or patterns in converted recordings
- Extracting topics or themes from session transcripts
- Finding specific commands or errors in session history
- Auto-discovering unexpected terms in recordings
- Analyzing session content for documentation or review
---
## Analysis Tiers
| Tier | Tool | Speed (4MB) | When to Use |
| ---- | ------- | ----------- | ------------------------------ |
| 1 | ripgrep | 50-200ms | Always start here (curated) |
| 2 | YAKE | 1-5s | Auto-discover unexpected terms |
| 3 | TF-IDF | 5-30s | Topic modeling (optional) |
**Decision**: Start with Tier 1 (ripgrep + curated keywords). Only use Tier 2 (YAKE) when auto-discovery is explicitly requested.
---
## Requirements
| Component | Required | Installation | Notes |
| ----------- | -------- | ---------------------- | ----------------------- |
| **ripgrep** | Yes | `brew install ripgrep` | Primary search tool |
| **YAKE** | Optional | `uv run --with yake` | For auto-discovery tier |
---
## Workflow Phases (ALL MANDATORY)
**IMPORTANT**: All phases are MANDATORY. Do NOT skip any phase. AskUserQuestion MUST be used at each decision point.
### Phase 0: Preflight Check
**Purpose**: Verify input file exists and check for .txt (converted) format.
```bash
/usr/bin/env bash << 'PREFLIGHT_EOF'
INPUT_FILE="${1:-}"
if [[ -z "$INPUT_FILE" ]]; then
echo "NO_FILE_PROVIDED"
elif [[ ! -f "$INPUT_FILE" ]]; then
echo "FILE_NOT_FOUND: $INPUT_FILE"
elif [[ "$INPUT_FILE" == *.cast ]]; then
echo "WRONG_FORMAT: Convert to .txt first with /asciinema-tools:convert"
elif [[ "$INPUT_FILE" == *.txt ]]; then
SIZE=$(ls -lh "$INPUT_FILE" | awk '{print $5}')
LINES=$(wc -l < "$INPUT_FILE" | tr -d ' ')
echo "READY: $INPUT_FILE ($SIZE, $LINES lines)"
else
echo "UNKNOWN_FORMAT: Expected .txt file"
fi
PREFLIGHT_EOF
```
If no .txt file found, suggest running `/asciinema-tools:convert` first.
---
### Phase 1: File Selection (MANDATORY)
**Purpose**: Discover .txt files and let user select which to analyze.
#### Step 1.1: Discover .txt Files
```bash
/usr/bin/env bash << 'DISCOVER_TXT_EOF'
# Find .txt files that look like converted recordings
for file in $(fd -e txt . --max-depth 3 2>/dev/null | head -10); do
SIZE=$(ls -lh "$file" 2>/dev/null | awk '{print $5}')
LINES=$(wc -l < "$file" 2>/dev/null | tr -d ' ')
BASENAME=$(basename "$file")
echo "FILE:$file|SIZE:$SIZE|LINES:$LINES|NAME:$BASENAME"
done
DISCOVER_TXT_EOF
```
#### Step 1.2: Present File Selection (MANDATORY AskUserQuestion)
```
Question: "Which file would you like to analyze?"
Header: "File"
Options:
- Label: "{filename}.txt ({size})"
Description: "{line_count} lines"
- Label: "{filename2}.txt ({size2})"
Description: "{line_count2} lines"
- Label: "Enter path"
Description: "Provide a custom path to a .txt file"
- Label: "Convert first"
Description: "Run /asciinema-tools:convert before analysis"
```
---
### Phase 2: Analysis Type (MANDATORY)
**Purpose**: Let user choose analysis depth.
```
Question: "What type of analysis do you need?"
Header: "Type"
Options:
- Label: "Curated keywords (Recommended)"
Description: "Fast search (50-200ms) with domain-specific keyword sets"
- Label: "Auto-discover keywords"
Description: "YAKE unsupervised extraction (1-5s) - finds unexpected patterns"
- Label: "Full analysis"
Description: "Both curated + auto-discovery for comprehensive results"
- Label: "Density analysis"
Description: "Find high-concentration sections (peak activity windows)"
```
---
### Phase 3: Domain Selection (MANDATORY)
**Purpose**: Let user select which keyword domains to search.
```
Question: "Which domain keywords to search?"
Header: "Domain"
multiSelect: true
Options:
- Label: "Trading/Quantitative"
Description: "sharpe, sortino, calmar, backtest, drawdown, pnl, cagr, alpha, beta"
- Label: "ML/AI"
Description: "epoch, loss, accuracy, sota, training, model, validation, inference"
- Label: "Development"
Description: "iteration, refactor, fix, test, deploy, build, commit, merge"
- Label: "Claude Code"
Description: "Skill, TodoWrite, Read, Edit, Bash, Grep, iteration complete"
```
See [Domain Keywords Reference](./references/domain-keywords.md) for complete keyword lists.
---
### Phase 4: Execute Curated Analysis
**Purpose**: Run Grep searches for selected domain keywords.
#### Step 4.1: Trading Domain
```bash
/usr/bin/env bash << 'TRADING_EOF'
INPUT_FILE="${1:?}"
echo "=== Trading/Quantitative Keywords ==="
KEYWORDS="sharpe sortino calmar backtest drawdown pnl cagr alpha beta roi volatility"
for kw in $KEYWORDS; do
COUNT=$(rg -c -i "$kw" "$INPUT_FILE" 2>/dev/null || echo "0")
if [[ "$COUNT" -gt 0 ]]; then
echo " $kw: $COUNT"
fi
done
TRADING_EOF
```
#### Step 4.2: ML/AI Domain
```bash
/usr/bin/env bash << 'ML_EOF'
INPUT_FILE="${1:?}"
echo "=== ML/AI Keywords ==="
KEYWORDS="epoch loss accuracy sota training model validation inference tensor gradient"
for kw in $KEYWORDS; do
COUNT=$(rg -c -i "$kw" "$INPUT_FILE" 2>/dev/null || echo "0")
if [[ "$COUNT" -gt 0 ]]; then
echo " $kw: $COUNT"
fi
done
ML_EOF
```
#### Step 4.3: Development Domain
```bash
/usr/bin/env bash << 'DEV_EOF'
INPUT_FILE="${1:?}"
echo "=== Development Keywords ==="
KEYWORDS="iteration refactor fix test deploy build commit merge debug error"
for kw in $KEYWORDS; do
COUNT=$(rg -c -i "$kw" "$INPUT_FILE" 2>/dev/null || echo "0")
if [[ "$COUNT" -gt 0 ]]; then
echo " $kw: $COUNT"
fi
done
DEV_EOF
```
#### Step 4.4: Claude Code Domain
```bash
/usr/bin/env bash << 'CLAUDE_EOF'
INPUT_FILE="${1:?}"
echo "=== Claude Code Keywords ==="
KEYWORDS="Skill TodoWrite Read Edit Bash Grep Write"
for kw in $KEYWORDS; do
COUNT=$(rg -c "$kw" "$INPUT_FILE" 2>/dev/null || echo "0")
if [[ "$COUNT" -gt 0 ]]; then
echo " $kw: $COUNT"
fi
done
# Special patterns
ITERATION=$(rg -c "iteration complete" "$INPUT_FILE" 2>/dev/null || echo "0")
echo " 'iteration complete': $ITERATION"
CLAUDE_EOF
```
---
### Phase 5: YAKE Auto-Discovery (if selected)
**Purpose**: Run unsupervised keyword extraction.
```bash
/usr/bin/env bash << 'YAKE_EOF'
INPUT_FILE="${1:?}"
echo "=== Auto-discovered Keywords (YAKE) ==="
uv run --with yake python3 -c "
import yake
kw = yake.KeywordExtractor(
lan='en',
n=2, # bi-grams
dedupLim=0.9, # dedup threshold
top=20 # top keywords
)
with open('$INPUT_FILE') as f:
text = f.read()
keywords = kw.extract_keywords(text)
for score, keyword in keywords:
print(f'{score:.4f} {keyword}')
"
YAKE_EOF
```
---
### Phase 6: Density Analysis (if selected)
**Purpose**: Find sections with highest keyword concentration.
```bash
/usr/bin/env bash << 'DENSITY_EOF'
INPUT_FILE="${1:?}"
KEYWORD="${2:-sharpe}"
WINDOW_SIZE=100 # lines
echo "=== Density Analysis: '$KEYWORD' ==="
echo "Window size: $WINDOW_SIZE lines"
echo ""
TOTAL_LINES=$(wc -l < "$INPUT_FILE" | tr -d ' ')
TOTAL_MATCHES=$(rg -c -i "$KEYWORD" "$INPUT_FILE" 2>/dev/null || echo "0")
echo "Total matches: $TOTAL_MATCHES in $TOTAL_LINES lines"
echo "Overall density: $(echo "scale=4; $TOTAL_MATCHES / $TOTAL_LINES * 1000" | bc) per 1000 lines"
echo ""
# Find peak windows
echo "Top 5 densest windows:"
awk -v ws="$WINDOW_SIZE" -v kw="$KEYWORD" '
BEGIN { IGNORECASE=1 }
{
lines[NR] = $0
if (tolower($0) ~ tolower(kw)) matches[NR] = 1
}
END {
for (start = 1; start <= NR - ws; start += ws/2) {
count = 0
for (i = start; i < start + ws && i <= NR; i++) {
if (matches[i]) count++
}
if (count > 0) {
printf "Lines %d-%d: %d matches (%.1f per 100)\n", start, start+ws-1, count, count*100/ws
}
}
}
' "$INPUT_FILE" | sort -t: -k2 -rn | head -5
DENSITY_EOF
```
---
### Phase 7: Report Format (MANDATORY)
**Purpose**: Let user choose output format.
```
Question: "How should results be presented?"
Header: "Output"
Options:
- Label: "Summary table (Recommended)"
Description: "Keyword counts + top 5 peak sections"
- Label: "Detailed report"
Description: "Full analysis with timestamps and surrounding context"
- Label: "JSON export"
Description: "Machine-readable output for further processing"
- Label: "Markdown report"
Description: "Save formatted report to file"
```
---
### Phase 8: Follow-up Actions (MANDATORY)
**Purpose**: Guide user to next action.
```
Question: "Analysis complete. What's next?"
Header: "Next"
Options:
- Label: "Jump to peak section"
Description: "Read the highest-density section in the file"
- Label: "Search for specific keyword"
Description: "Grep for a custom term with context"
- Label: "Cross-reference with .cast"
Description: "Map findings back to original timestamps"
- Label: "Done"
Description: "Exit - no further action needed"
```
---
## TodoWrite Task Template
```
1. [Preflight] Check input file exists and is .txt format
2. [Preflight] Suggest /convert if .cast file provided
3. [Discovery] Find .txt files with line counts
4. [Selection] AskUserQuestion: file to analyze
5. [Type] AskUserQuestion: analysis type (curated/auto/full/density)
6. [Domain] AskUserQuestion: keyword domains (multi-select)
7. [Curated] Run Grep searches for selected domains
8. [Auto] Run YAKE if auto-discovery selected
9. [Density] Calculate density windows if requested
10. [Format] AskUserQuestion: report format
11. [Next] AskUserQuestion: follow-up actions
```
---
## Post-Change Checklist
After modifying this skill:
1. [ ] All bash blocks use heredoc wrapper
2. [ ] Curated keywords match references/domain-keywords.md
3. [ ] Analysis tiers match references/analysis-tiers.md
4. [ ] YAKE invocation uses `uv run --with yake`
5. [ ] All AskUserQuestion phases are present
6. [ ] TodoWrite template matches actual workflow
---
## Reference Documentation
- [Domain Keywords Reference](./references/domain-keywords.md)
- [Analysis Tiers Reference](./references/analysis-tiers.md)
- [ripgrep Manual](https://github.com/BurntSushi/ripgrep)
- [YAKE Documentation](https://github.com/LIAAD/yake)
---
## Troubleshooting
| Issue | Cause | Solution |
| --------------------------- | --------------------------- | ------------------------------------------------- |
| "WRONG_FORMAT" error | .cast file provided | Run /asciinema-tools:convert first to create .txt |
| ripgrep not found | Not installed | `brew install ripgrep` |
| YAKE import error | Package not installed | `uv run --with yake` handles this automatically |
| No keywords found | Wrong domain selected | Try different domain or auto-discovery mode |
| Density analysis empty | Keyword not in file | Use curated search first to find valid keywords |
| File too large for YAKE | Memory constraints | Use Tier 1 (ripgrep) only for large files |
| Zero matches in all domains | File is binary or corrupted | Verify file is plain text with `file` command |
| fd command not found | Not installed | `brew install fd` or use `find` alternative |
This skill performs semantic analysis on converted asciinema .txt recordings to extract keywords, detect patterns, and locate high-density activity windows. It combines fast curated searches with optional unsupervised extraction and density analysis to produce actionable summaries or machine-readable exports. The workflow is interactive and enforces mandatory checks and decision points to ensure reliable, reproducible results.
The analyzer starts with a preflight check to validate input and discover candidate .txt files. It runs a tiered analysis: ripgrep for fast curated keyword counts, YAKE for optional unsupervised keyword discovery, and an optional TF‑IDF/topic step for deeper modeling. Density analysis windows identify peaks of keyword concentration and the tool supports multiple output formats (summary, detailed, JSON, Markdown).
What formats are accepted?
The skill expects converted .txt recordings. If you provide a .cast file it will prompt you to convert first.
When should I use YAKE vs ripgrep?
Start with ripgrep and curated domains for speed and precision. Use YAKE when you explicitly want unsupervised discovery of unexpected keywords.