home / skills / tencentcloudbase / cloudbase-mcp / ai-model-nodejs
This skill lets you call AI models from Node.js backends or CloudBase functions to generate text, stream results, and create images.
npx playbooks add skill tencentcloudbase/cloudbase-mcp --skill ai-model-nodejsReview the files below or copy the command above to add this skill to your agents.
---
name: ai-model-nodejs
description: Use this skill when developing Node.js backend services or CloudBase cloud functions (Express/Koa/NestJS, serverless, backend APIs) that need AI capabilities. Features text generation (generateText), streaming (streamText), AND image generation (generateImage) via @cloudbase/node-sdk ≥3.16.0. Built-in models include Hunyuan (hunyuan-2.0-instruct-20251111 recommended), DeepSeek (deepseek-v3.2 recommended), and hunyuan-image for images. This is the ONLY SDK that supports image generation. NOT for browser/Web apps (use ai-model-web) or WeChat Mini Program (use ai-model-wechat).
alwaysApply: false
---
## When to use this skill
Use this skill for **calling AI models in Node.js backend or CloudBase cloud functions** using `@cloudbase/node-sdk`.
**Use it when you need to:**
- Integrate AI text generation in backend services
- Generate images with Hunyuan Image model
- Call AI models from CloudBase cloud functions
- Server-side AI processing
**Do NOT use for:**
- Browser/Web apps → use `ai-model-web` skill
- WeChat Mini Program → use `ai-model-wechat` skill
- HTTP API integration → use `http-api` skill
---
## Available Providers and Models
CloudBase provides these built-in providers and models:
| Provider | Models | Recommended |
|----------|--------|-------------|
| `hunyuan-exp` | `hunyuan-turbos-latest`, `hunyuan-t1-latest`, `hunyuan-2.0-thinking-20251109`, `hunyuan-2.0-instruct-20251111` | ✅ `hunyuan-2.0-instruct-20251111` |
| `deepseek` | `deepseek-r1-0528`, `deepseek-v3-0324`, `deepseek-v3.2` | ✅ `deepseek-v3.2` |
---
## Installation
```bash
npm install @cloudbase/node-sdk
```
⚠️ **AI feature requires version 3.16.0 or above.** Check with `npm list @cloudbase/node-sdk`.
---
## Initialization
### In Cloud Functions
```js
const tcb = require('@cloudbase/node-sdk');
const app = tcb.init({ env: '<YOUR_ENV_ID>' });
exports.main = async (event, context) => {
const ai = app.ai();
// Use AI features
};
```
### Cloud Function Configuration for AI Models
⚠️ **Important:** When creating cloud functions that use AI models (especially `generateImage()` and large language model generation), set a longer timeout as these operations can be slow.
**Using MCP Tool `createFunction`:**
Set the `timeout` parameter in the `func` object:
- **Parameter**: `func.timeout` (number)
- **Unit**: seconds
- **Range**: 1 - 900
- **Default**: 20 seconds (usually too short for AI operations)
**Recommended timeout values:**
- **Text generation (`generateText`)**: 60-120 seconds
- **Streaming (`streamText`)**: 60-120 seconds
- **Image generation (`generateImage`)**: 300-900 seconds (recommended: 900s)
- **Combined operations**: 900 seconds (maximum allowed)
### In Regular Node.js Server
```js
const tcb = require('@cloudbase/node-sdk');
const app = tcb.init({
env: '<YOUR_ENV_ID>',
secretId: '<YOUR_SECRET_ID>',
secretKey: '<YOUR_SECRET_KEY>'
});
const ai = app.ai();
```
---
## generateText() - Non-streaming
```js
const model = ai.createModel("hunyuan-exp");
const result = await model.generateText({
model: "hunyuan-2.0-instruct-20251111", // Recommended model
messages: [{ role: "user", content: "你好,请你介绍一下李白" }],
});
console.log(result.text); // Generated text string
console.log(result.usage); // { prompt_tokens, completion_tokens, total_tokens }
console.log(result.messages); // Full message history
console.log(result.rawResponses); // Raw model responses
```
---
## streamText() - Streaming
```js
const model = ai.createModel("hunyuan-exp");
const res = await model.streamText({
model: "hunyuan-2.0-instruct-20251111", // Recommended model
messages: [{ role: "user", content: "你好,请你介绍一下李白" }],
});
// Option 1: Iterate text stream (recommended)
for await (let text of res.textStream) {
console.log(text); // Incremental text chunks
}
// Option 2: Iterate data stream for full response data
for await (let data of res.dataStream) {
console.log(data); // Full response chunk with metadata
}
// Option 3: Get final results
const messages = await res.messages; // Full message history
const usage = await res.usage; // Token usage
```
---
## generateImage() - Image Generation
⚠️ **Image generation is only available in Node SDK**, not in JS SDK (Web) or WeChat Mini Program.
```js
const imageModel = ai.createImageModel("hunyuan-image");
const res = await imageModel.generateImage({
model: "hunyuan-image",
prompt: "一只可爱的猫咪在草地上玩耍",
size: "1024x1024",
version: "v1.9",
});
console.log(res.data[0].url); // Image URL (valid 24 hours)
console.log(res.data[0].revised_prompt);// Revised prompt if revise=true
```
### Image Generation Parameters
```ts
interface HunyuanGenerateImageInput {
model: "hunyuan-image"; // Required
prompt: string; // Required: image description
version?: "v1.8.1" | "v1.9"; // Default: "v1.8.1"
size?: string; // Default: "1024x1024"
negative_prompt?: string; // v1.9 only
style?: string; // v1.9 only
revise?: boolean; // Default: true
n?: number; // Default: 1
footnote?: string; // Watermark, max 16 chars
seed?: number; // Range: [1, 4294967295]
}
interface HunyuanGenerateImageOutput {
id: string;
created: number;
data: Array<{
url: string; // Image URL (24h valid)
revised_prompt?: string;
}>;
}
```
---
## Type Definitions
```ts
interface BaseChatModelInput {
model: string; // Required: model name
messages: Array<ChatModelMessage>; // Required: message array
temperature?: number; // Optional: sampling temperature
topP?: number; // Optional: nucleus sampling
}
type ChatModelMessage =
| { role: "user"; content: string }
| { role: "system"; content: string }
| { role: "assistant"; content: string };
interface GenerateTextResult {
text: string; // Generated text
messages: Array<ChatModelMessage>; // Full message history
usage: Usage; // Token usage
rawResponses: Array<unknown>; // Raw model responses
error?: unknown; // Error if any
}
interface StreamTextResult {
textStream: AsyncIterable<string>; // Incremental text stream
dataStream: AsyncIterable<DataChunk>; // Full data stream
messages: Promise<ChatModelMessage[]>;// Final message history
usage: Promise<Usage>; // Final token usage
error?: unknown; // Error if any
}
interface Usage {
prompt_tokens: number;
completion_tokens: number;
total_tokens: number;
}
```
This skill enables Node.js backends and CloudBase cloud functions to call CloudBase AI models for text and image generation. It wraps @cloudbase/node-sdk (v3.16.0+) and exposes generateText, streamText, and generateImage capabilities with recommended built-in models. Use it for server-side AI workflows, not for browser or Mini Program clients.
Initialize the CloudBase SDK in a server or cloud function, create an ai model instance, and call generateText or streamText for LLM outputs. For images, use createImageModel and generateImage—image generation is supported only in the Node SDK. The skill returns structured results, streaming iterators, usage metrics, and raw responses for debugging.
Which SDK version is required for AI features?
Use @cloudbase/node-sdk v3.16.0 or newer; earlier versions do not support the AI APIs.
Can I generate images in a browser or Mini Program?
No. Image generation is supported only in the Node SDK for server/cloud functions; use ai-model-web or ai-model-wechat for their respective client environments.