home / skills / supercent-io / skills-template / pollinations-ai
This skill generates and saves images using Pollinations.ai's free URL-based API for rapid prototyping and creative workflows.
npx playbooks add skill supercent-io/skills-template --skill pollinations-aiReview the files below or copy the command above to add this skill to your agents.
---
name: pollinations-ai
description: Generate and save images using Pollinations.ai's free, open-source API. No signup required. Supports URL-based generation, custom parameters (width, height, model, seed), and automatic file saving. Perfect for quick prototypes, marketing assets, and creative workflows.
tags: [image-generation, pollinations, free, api, creative, ai-art, url-based]
platforms: [Claude, ChatGPT, Gemini, Codex]
allowed-tools:
- Bash
- Write
- Read
---
# Pollinations.ai Image Generation
Free, open-source AI image generation through simple URL parameters. No API key or signup required.
## When to use this skill
- **Quick prototyping**: Generate placeholder images instantly
- **Marketing assets**: Create hero images, banners, social media content
- **Creative exploration**: Test multiple styles and compositions rapidly
- **No-budget projects**: Free alternative to paid image generation services
- **Automated workflows**: Script-friendly URL-based API
---
## Instructions
### Step 1: Understand the API Structure
Pollinations.ai uses a simple URL-based API:
```
https://image.pollinations.ai/prompt/{YOUR_PROMPT}?{PARAMETERS}
```
**No authentication required** - just construct the URL and fetch the image.
**Available Parameters**:
- `width` / `height`: Resolution (default: 1024x1024)
- `model`: AI model (`flux`, `turbo`, `stable-diffusion`)
- `seed`: Number for reproducible results
- `nologo`: `true` to remove watermark (if supported)
- `enhance`: `true` for automatic prompt enhancement
### Step 2: Craft Your Prompt
Use descriptive prompts with specific details:
**Good prompt structure**:
```
[Subject], [Style], [Lighting], [Mood], [Composition], [Quality modifiers]
```
**Example**:
```
A father welcoming a beautiful holiday, warm golden hour lighting,
cozy interior background with festive decorations, 8k resolution,
highly detailed, cinematic depth of field
```
**Prompt styles**:
- **Photorealistic**: "photorealistic shot, 8k resolution, highly detailed, cinematic"
- **Illustrative**: "digital illustration, soft pastel colors, disney style animation"
- **Minimalist**: "minimalist vector art, flat design, simple geometric shapes"
### Step 3: Generate via URL (Browser Method)
Simply open the URL in a browser or use `curl`:
```bash
# Basic generation
curl "https://image.pollinations.ai/prompt/A_serene_mountain_landscape" -o mountain.jpg
# With parameters
curl "https://image.pollinations.ai/prompt/A_serene_mountain_landscape?width=1920&height=1080&model=flux&seed=42" -o mountain-hd.jpg
```
### Step 4: Generate and Save (Python Method)
For automation and file management:
```python
import requests
from urllib.parse import quote
def generate_image(prompt, output_file, width=1920, height=1080, model="flux", seed=None):
"""
Generate image using Pollinations.ai and save to file
Args:
prompt: Description of the image to generate
output_file: Path to save the image
width: Image width in pixels
height: Image height in pixels
model: AI model ('flux', 'turbo', 'stable-diffusion')
seed: Optional seed for reproducibility
"""
# Encode prompt for URL
encoded_prompt = quote(prompt)
url = f"https://image.pollinations.ai/prompt/{encoded_prompt}"
# Build parameters
params = {
"width": width,
"height": height,
"model": model,
"nologo": "true"
}
if seed:
params["seed"] = seed
# Generate and save
print(f"Generating: {prompt[:50]}...")
response = requests.get(url, params=params)
if response.status_code == 200:
with open(output_file, "wb") as f:
f.write(response.content)
print(f"✓ Saved to {output_file}")
return True
else:
print(f"✗ Error: {response.status_code}")
return False
# Example usage
generate_image(
prompt="A father welcoming a beautiful holiday, warm lighting, festive decorations",
output_file="holiday_father.jpg",
width=1920,
height=1080,
model="flux",
seed=12345
)
```
### Step 5: Batch Generation
Generate multiple variations:
```python
prompts = [
"photorealistic shot of a father at front door, warm lighting, festive decorations",
"digital illustration of a father in snow, magical winter wonderland, disney style",
"minimalist silhouette of father and child, holiday fireworks, flat design"
]
for i, prompt in enumerate(prompts):
generate_image(
prompt=prompt,
output_file=f"variant_{i+1}.jpg",
width=1920,
height=1080,
model="flux"
)
```
### Step 6: Document Your Generations
Save metadata for reproducibility:
```python
import json
from datetime import datetime
metadata = {
"prompt": prompt,
"model": "flux",
"width": 1920,
"height": 1080,
"seed": 12345,
"output_file": "holiday_father.jpg",
"timestamp": datetime.now().isoformat()
}
with open("generation_metadata.json", "w") as f:
json.dump(metadata, f, indent=2)
```
---
## Examples
### Example 1: Hero Image for Website
```python
generate_image(
prompt="serene mountain landscape at sunset, wide 16:9, minimal style, soft gradients in blue tones, clean lines, modern aesthetic",
output_file="hero-image.jpg",
width=1920,
height=1080,
model="flux"
)
```
**Expected output**: 16:9 landscape image, minimal style, blue color palette
### Example 2: Product Thumbnail
```python
generate_image(
prompt="futuristic dashboard UI, 1:1 square, clean interface, soft lighting, professional feel, dark theme, subtle glow effects",
output_file="product-thumb.jpg",
width=1024,
height=1024,
model="flux"
)
```
**Expected output**: Square thumbnail, dark theme, app store ready
### Example 3: Social Media Banner
```python
generate_image(
prompt="LinkedIn banner for SaaS startup, modern gradient background, abstract geometric shapes, colors from purple to blue, space for text on left side",
output_file="linkedin-banner.jpg",
width=1584,
height=396,
model="flux"
)
```
**Expected output**: LinkedIn-optimized dimensions (1584x396), text-safe zone
### Example 4: Batch Variations with Seeds
```python
# Generate 4 variations of the same prompt with different seeds
base_prompt = "A father welcoming a beautiful holiday, cinematic lighting"
for seed in [100, 200, 300, 400]:
generate_image(
prompt=base_prompt,
output_file=f"variation_seed_{seed}.jpg",
width=1920,
height=1080,
model="flux",
seed=seed
)
```
**Expected output**: 4 similar images with subtle variations
---
## Best practices
1. **Use specific prompts**: Include style, lighting, mood, and quality modifiers
2. **Specify dimensions early**: Prevents unintended cropping
3. **Use seeds for consistency**: Same seed + prompt = same image
4. **Model selection**:
- `flux`: Highest quality, slower
- `turbo`: Fast iterations
- `stable-diffusion`: Balanced
5. **Save metadata**: Track prompts, seeds, and parameters for reproducibility
6. **Batch similar requests**: Generate style sets with consistent parameters
7. **URL encode prompts**: Use `urllib.parse.quote()` for special characters
---
## Common pitfalls
- **Vague prompts**: Add specific details about style, lighting, and composition
- **Ignoring aspect ratios**: Check target platform requirements (Instagram 1:1, LinkedIn 1584x396, etc.)
- **Overly complex scenes**: Simplify for clarity and better results
- **Not saving metadata**: Difficult to reproduce or iterate on successful images
- **Forgetting URL encoding**: Special characters break URLs
---
## Troubleshooting
### Issue: Inconsistent outputs
**Cause**: No seed specified
**Solution**: Use a fixed seed for reproducible results
```python
generate_image(prompt="...", seed=12345, ...) # Same output every time
```
### Issue: Wrong aspect ratio
**Cause**: Incorrect width/height parameters
**Solution**: Use platform-specific dimensions
```python
# Instagram: 1:1
generate_image(prompt="...", width=1080, height=1080)
# LinkedIn banner: ~4:1
generate_image(prompt="...", width=1584, height=396)
# YouTube thumbnail: 16:9
generate_image(prompt="...", width=1280, height=720)
```
### Issue: Image doesn't match brand colors
**Cause**: No color specification in prompt
**Solution**: Include HEX codes or color names
```python
prompt = "landscape with brand colors deep blue #2563EB and purple #8B5CF6"
```
### Issue: Request fails (HTTP error)
**Cause**: Network issue or service downtime
**Solution**: Add retry logic
```python
import time
def generate_with_retry(prompt, output_file, max_retries=3):
for attempt in range(max_retries):
if generate_image(prompt, output_file):
return True
print(f"Retry {attempt + 1}/{max_retries}...")
time.sleep(2)
return False
```
---
## Output format
```markdown
## Image Generation Report
### Request
- **Prompt**: [full prompt text]
- **Model**: flux
- **Dimensions**: 1920x1080
- **Seed**: 12345
### Output Files
1. `hero-image-v1.jpg` - Primary variant
2. `hero-image-v2.jpg` - Alternative style
3. `hero-image-v3.jpg` - Different lighting
### Metadata
- Generated: 2026-02-13T14:30:00Z
- Iterations: 3
- Selected: hero-image-v1.jpg
### Usage Notes
- Best for: Website hero section
- Format: JPEG, 1920x1080
- Reproducible: Yes (seed: 12345)
```
---
## Multi-Agent Workflow
### Validation & Quality Check
- **Round 1 (Orchestrator - Claude)**:
- Validate prompt completeness
- Check dimension requirements
- Verify seed consistency
- **Round 2 (Executor - Codex)**:
- Execute generation script
- Save files with proper naming
- Generate metadata JSON
- **Round 3 (Analyst - Gemini)**:
- Review style consistency
- Check brand alignment
- Suggest prompt improvements
### Agent Roles
| Agent | Role | Tools |
|-------|------|-------|
| Claude | Prompt engineering, quality validation | Write, Read |
| Codex | Script execution, batch processing | Bash, Write |
| Gemini | Style analysis, brand consistency check | Read, ask-gemini |
### Example Multi-Agent Workflow
```bash
# 1. Claude: Generate prompts and script
# 2. Codex: Execute generation
bash -c "python generate_images.py"
# 3. Gemini: Review outputs
ask-gemini "@outputs/ Analyze brand consistency of generated images"
```
---
## Metadata
### Version
- **Current Version**: 1.0.0
- **Last Updated**: 2026-02-13
- **Compatible Platforms**: Claude, ChatGPT, Gemini, Codex
### Related Skills
- [image-generation](../image-generation/SKILL.md) - MCP-based image generation
- [design-system](../design-system/SKILL.md) - Design system implementation
- [presentation-builder](../presentation-builder/SKILL.md) - Presentation creation
### API Documentation
- Official Site: https://pollinations.ai
- API Endpoint: https://image.pollinations.ai/prompt/{prompt}
- Models: flux, turbo, stable-diffusion
### Tags
`#pollinations` `#image-generation` `#free` `#api` `#url-based` `#no-signup` `#creative`
This skill lets you generate and save images using Pollinations.ai’s free, open URL-based API with no signup or API key. It supports custom parameters (width, height, model, seed), URL encoding, automatic file saving, and batch generation for prototypes, marketing, and creative work. The Python helper makes automation and metadata tracking simple.
The skill builds a URL like https://image.pollinations.ai/prompt/{encoded_prompt} and issues an HTTP GET to retrieve an image. You can pass query parameters for width, height, model (flux, turbo, stable-diffusion), seed, nologo, and enhance. The Python function encodes the prompt, downloads the image, writes it to disk, and optionally logs metadata for reproducibility.
Do I need an API key or account?
No. Pollinations.ai uses an open URL endpoint and does not require authentication or signup.
How do I get reproducible results?
Include a seed parameter with your prompt. The same prompt + seed + model + dimensions produces the same image.