home / skills / supercent-io / skills-template / genkit
This skill helps you build production-ready AI workflows and multi-agent systems with Firebase Genkit, enabling tool-calling, RAG pipelines, and deployment.
npx playbooks add skill supercent-io/skills-template --skill genkitReview the files below or copy the command above to add this skill to your agents.
---
name: genkit
description: Build production-ready AI workflows using Firebase Genkit. Use when creating flows, tool-calling agents, RAG pipelines, multi-agent systems, or deploying AI to Firebase/Cloud Run. Supports TypeScript, Go, and Python with Gemini, OpenAI, Anthropic, Ollama, and Vertex AI plugins.
tags: [genkit, firebase, ai, llm, flows, agents, rag, gemini, typescript, google-cloud]
platforms: [Claude, ChatGPT, Gemini, Codex]
version: 1.0.0
---
# Firebase Genkit
## When to use this skill
- **AI workflow orchestration**: Building multi-step AI pipelines with type-safe inputs/outputs
- **Flow-based APIs**: Wrapping LLM calls into deployable HTTP endpoints
- **Tool calling / agents**: Equipping models with custom tools and implementing agentic loops
- **RAG pipelines**: Retrieval-augmented generation with vector databases (Pinecone, pgvector, Firestore, Chroma, etc.)
- **Multi-agent systems**: Coordinating multiple specialized AI agents
- **Streaming responses**: Real-time token-by-token output for chat or long-form content
- **Firebase/Cloud Run deployment**: Deploying AI functions to Google Cloud
- **Prompt management**: Managing prompts as versioned `.prompt` files with Dotprompt
---
## Installation & Setup
### Step 1: Install the Genkit CLI
```bash
# npm (recommended for JavaScript/TypeScript)
npm install -g genkit-cli
# macOS/Linux binary
curl -sL cli.genkit.dev | bash
```
### Step 2: Create a TypeScript project
```bash
mkdir my-genkit-app && cd my-genkit-app
npm init -y
npm pkg set type=module
npm install -D typescript tsx
npx tsc --init
mkdir src && touch src/index.ts
```
### Step 3: Install Genkit core and a model plugin
```bash
# Core + Google AI (Gemini) — free tier, no credit card required
npm install genkit @genkit-ai/google-genai
# Or: Vertex AI (requires GCP project)
npm install genkit @genkit-ai/vertexai
# Or: OpenAI
npm install genkit genkitx-openai
# Or: Anthropic (Claude)
npm install genkit genkitx-anthropic
# Or: Ollama (local models)
npm install genkit genkitx-ollama
```
### Step 4: Configure API Key
```bash
# Google AI (Gemini)
export GEMINI_API_KEY=your_key_here
# OpenAI
export OPENAI_API_KEY=your_key_here
# Anthropic
export ANTHROPIC_API_KEY=your_key_here
```
---
## Core Concepts
### Initializing Genkit
```typescript
import { googleAI } from '@genkit-ai/google-genai';
import { genkit } from 'genkit';
const ai = genkit({
plugins: [googleAI()],
model: googleAI.model('gemini-2.5-flash'), // default model
});
```
### Defining Flows
Flows are the core primitive: type-safe, observable, deployable AI functions.
```typescript
import { genkit, z } from 'genkit';
import { googleAI } from '@genkit-ai/google-genai';
const ai = genkit({ plugins: [googleAI()] });
// Input/output schemas with Zod
const SummaryInputSchema = z.object({
text: z.string().describe('Text to summarize'),
maxWords: z.number().optional().default(100),
});
const SummaryOutputSchema = z.object({
summary: z.string(),
keyPoints: z.array(z.string()),
});
export const summarizeFlow = ai.defineFlow(
{
name: 'summarizeFlow',
inputSchema: SummaryInputSchema,
outputSchema: SummaryOutputSchema,
},
async ({ text, maxWords }) => {
const { output } = await ai.generate({
model: googleAI.model('gemini-2.5-flash'),
prompt: `Summarize the following text in at most ${maxWords} words and extract key points:\n\n${text}`,
output: { schema: SummaryOutputSchema },
});
if (!output) throw new Error('No output generated');
return output;
}
);
// Call the flow
const result = await summarizeFlow({
text: 'Long article content here...',
maxWords: 50,
});
console.log(result.summary);
```
### Generating Content
```typescript
// Simple text generation
const { text } = await ai.generate({
model: googleAI.model('gemini-2.5-flash'),
prompt: 'Explain quantum computing in one sentence.',
});
// Structured output
const { output } = await ai.generate({
prompt: 'List 3 programming languages with their use cases',
output: {
schema: z.object({
languages: z.array(z.object({
name: z.string(),
useCase: z.string(),
})),
}),
},
});
// With system prompt
const { text: response } = await ai.generate({
system: 'You are a senior TypeScript engineer. Be concise.',
prompt: 'What is the difference between interface and type in TypeScript?',
});
// Multimodal (image + text)
const { text: description } = await ai.generate({
prompt: [
{ text: 'What is in this image?' },
{ media: { url: 'https://example.com/image.jpg', contentType: 'image/jpeg' } },
],
});
```
### Streaming Flows
```typescript
export const streamingFlow = ai.defineFlow(
{
name: 'streamingFlow',
inputSchema: z.object({ topic: z.string() }),
streamSchema: z.string(), // type of each chunk
outputSchema: z.object({ full: z.string() }),
},
async ({ topic }, { sendChunk }) => {
const { stream, response } = ai.generateStream({
prompt: `Write a detailed essay about ${topic}.`,
});
for await (const chunk of stream) {
sendChunk(chunk.text); // stream each token to client
}
const { text } = await response;
return { full: text };
}
);
// Client-side consumption
const stream = streamingFlow.stream({ topic: 'AI ethics' });
for await (const chunk of stream.stream) {
process.stdout.write(chunk);
}
const finalOutput = await stream.output;
```
### Tool Calling (Agents)
```typescript
import { z } from 'genkit';
// Define tools
const getWeatherTool = ai.defineTool(
{
name: 'getWeather',
description: 'Get current weather for a city',
inputSchema: z.object({ city: z.string() }),
outputSchema: z.object({ temp: z.number(), condition: z.string() }),
},
async ({ city }) => {
// Call real weather API
return { temp: 22, condition: 'sunny' };
}
);
const searchWebTool = ai.defineTool(
{
name: 'searchWeb',
description: 'Search the web for information',
inputSchema: z.object({ query: z.string() }),
outputSchema: z.string(),
},
async ({ query }) => {
// Call search API
return `Search results for: ${query}`;
}
);
// Agent flow with tools
export const agentFlow = ai.defineFlow(
{
name: 'agentFlow',
inputSchema: z.object({ question: z.string() }),
outputSchema: z.string(),
},
async ({ question }) => {
const { text } = await ai.generate({
prompt: question,
tools: [getWeatherTool, searchWebTool],
returnToolRequests: false, // auto-execute tools
});
return text;
}
);
```
### Prompts with Dotprompt
Manage prompts as versioned `.prompt` files:
```
# src/prompts/summarize.prompt
---
model: googleai/gemini-2.5-flash
input:
schema:
text: string
style?: string
output:
schema:
summary: string
sentiment: string
---
Summarize the following text in a {{style, default: "professional"}} tone:
{{text}}
Return JSON with summary and sentiment (positive/negative/neutral).
```
```typescript
// Load and use dotprompt
const summarizePrompt = ai.prompt('summarize');
const { output } = await summarizePrompt({
text: 'Article content here...',
style: 'casual',
});
```
### RAG — Retrieval-Augmented Generation
```typescript
import { devLocalVectorstore } from '@genkit-ai/dev-local-vectorstore';
import { textEmbedding004 } from '@genkit-ai/google-genai';
const ai = genkit({
plugins: [
googleAI(),
devLocalVectorstore([{
indexName: 'documents',
embedder: textEmbedding004,
}]),
],
});
// Index documents
await ai.index({
indexer: devLocalVectorstoreIndexer('documents'),
docs: [
{ content: [{ text: 'Document 1 content...' }], metadata: { source: 'doc1' } },
{ content: [{ text: 'Document 2 content...' }], metadata: { source: 'doc2' } },
],
});
// RAG flow
export const ragFlow = ai.defineFlow(
{
name: 'ragFlow',
inputSchema: z.object({ question: z.string() }),
outputSchema: z.string(),
},
async ({ question }) => {
// Retrieve relevant documents
const docs = await ai.retrieve({
retriever: devLocalVectorstoreRetriever('documents'),
query: question,
options: { k: 3 },
});
// Generate answer grounded in retrieved docs
const { text } = await ai.generate({
system: 'Answer questions using only the provided context.',
prompt: question,
docs,
});
return text;
}
);
```
### Chat Sessions
```typescript
export const chatFlow = ai.defineFlow(
{
name: 'chatFlow',
inputSchema: z.object({ message: z.string(), sessionId: z.string() }),
outputSchema: z.string(),
},
async ({ message, sessionId }) => {
const session = ai.loadSession(sessionId) ?? ai.createSession({ sessionId });
const chat = session.chat({
system: 'You are a helpful assistant.',
});
const { text } = await chat.send(message);
return text;
}
);
```
### Multi-Agent Systems
```typescript
// Specialist agents
const researchAgent = ai.defineFlow(
{ name: 'researchAgent', inputSchema: z.string(), outputSchema: z.string() },
async (query) => {
const { text } = await ai.generate({
system: 'You are a research expert. Gather facts and cite sources.',
prompt: query,
tools: [searchWebTool],
});
return text;
}
);
const writerAgent = ai.defineFlow(
{ name: 'writerAgent', inputSchema: z.string(), outputSchema: z.string() },
async (brief) => {
const { text } = await ai.generate({
system: 'You are a professional writer. Write clear, engaging content.',
prompt: brief,
});
return text;
}
);
// Orchestrator delegates to specialists
export const contentPipelineFlow = ai.defineFlow(
{
name: 'contentPipelineFlow',
inputSchema: z.object({ topic: z.string() }),
outputSchema: z.string(),
},
async ({ topic }) => {
const research = await researchAgent(`Research: ${topic}`);
const article = await writerAgent(`Write an article based on: ${research}`);
return article;
}
);
```
---
## Developer Tools
### CLI Commands
```bash
# Start Developer UI + connect to your app
genkit start -- npx tsx --watch src/index.ts
genkit start -o -- npx tsx src/index.ts # auto-open browser
# Run a specific flow from CLI
genkit flow:run summarizeFlow '{"text": "Hello world", "maxWords": 10}'
# Run with streaming output
genkit flow:run streamingFlow '{"topic": "AI"}' -s
# Evaluate a flow
genkit eval:flow ragFlow --input eval-inputs.json
# View all commands
genkit --help
# Disable analytics telemetry
genkit config set analyticsOptOut true
```
### Developer UI
The Developer UI runs at **http://localhost:4000** and provides:
- **Flow runner**: Execute flows with custom JSON inputs
- **Trace inspector**: Visualize each step (generate, embed, retrieve, tool calls)
- **Prompt playground**: Test prompts interactively
- **Model tester**: Compare outputs across different models
- **Evaluator**: Run evaluation datasets against flows
```bash
# Add npm script for convenience
# package.json
"scripts": {
"genkit:dev": "genkit start -- npx tsx --watch src/index.ts"
}
npm run genkit:dev
```
---
## Deployment
### Firebase Cloud Functions
```typescript
import { onCallGenkit } from 'firebase-functions/https';
import { defineSecret } from 'firebase-functions/params';
const apiKey = defineSecret('GOOGLE_AI_API_KEY');
export const summarize = onCallGenkit(
{ secrets: [apiKey] },
summarizeFlow
);
```
```bash
firebase deploy --only functions
```
### Express.js Server
```typescript
import express from 'express';
import { expressHandler } from 'genkit/express';
const app = express();
app.use(express.json());
app.post('/summarize', expressHandler(summarizeFlow));
app.post('/chat', expressHandler(chatFlow));
app.listen(3000, () => console.log('Server running on port 3000'));
```
### Cloud Run
```bash
# Build and deploy
gcloud run deploy genkit-app \
--source . \
--region us-central1 \
--set-env-vars GEMINI_API_KEY=$GEMINI_API_KEY
```
---
## Supported Plugins
### Model Providers
| Plugin | Package | Models |
|--------|---------|--------|
| Google AI | `@genkit-ai/google-genai` | Gemini 2.5 Flash/Pro |
| Vertex AI | `@genkit-ai/vertexai` | Gemini, Imagen, Claude |
| OpenAI | `genkitx-openai` | GPT-4o, o1, etc. |
| Anthropic | `genkitx-anthropic` | Claude 3.5/3 |
| AWS Bedrock | `genkitx-aws-bedrock` | Claude, Titan, etc. |
| Ollama | `genkitx-ollama` | Local models |
| DeepSeek | `genkitx-deepseek` | DeepSeek-R1 |
| xAI (Grok) | `genkitx-xai` | Grok models |
### Vector Databases
| Plugin | Package |
|--------|---------|
| Dev Local (testing) | `@genkit-ai/dev-local-vectorstore` |
| Pinecone | `genkitx-pinecone` |
| pgvector | `genkitx-pgvector` |
| Chroma | `genkitx-chroma` |
| Cloud Firestore | `@genkit-ai/firebase` |
| LanceDB | `genkitx-lancedb` |
---
## Best Practices
1. **Always define input/output schemas** — Use Zod objects for Dev UI labeled fields and API safety
2. **Use flows for all AI logic** — Even simple calls; flows give you tracing and deployment for free
3. **Store API keys in environment variables** — Never hardcode; use Firebase Secrets for production
4. **Use `ai.run()` to trace custom steps** — Wrap non-Genkit code in `ai.run()` for trace visibility
5. **Stream long-form content** — Use `defineFlow` with `streamSchema` + `sendChunk` for better UX
6. **Separate concerns with agents** — Specialized subflows > one monolithic flow
7. **Use Dotprompt for team prompts** — `.prompt` files enable versioning, review, and reuse
## Constraints
### Must Do
- Define schemas for all flow inputs and outputs
- Handle `null` output from `generate()` — throw meaningful errors
- Set `GENKIT_ENV=dev` when running flows separately from the dev server
- Use `onCallGenkit` (not raw Cloud Functions) when deploying to Firebase
### Must Not Do
- Never hardcode API keys in source code
- Do not use `generate()` outside a flow if you need tracing/observability
- Do not call `genkit start` without a command — always pass `-- <your-run-command>`
- Avoid blocking the event loop in tool handlers — use `async/await`
---
## References
- [Official Docs](https://genkit.dev/docs/overview/)
- [Get Started Guide](https://genkit.dev/docs/get-started/)
- [Developer Tools](https://genkit.dev/docs/devtools/)
- [Flows Reference](https://genkit.dev/docs/flows/)
- [Tool Calling](https://genkit.dev/docs/tool-calling/)
- [RAG Guide](https://genkit.dev/docs/rag/)
- [Multi-Agent Systems](https://genkit.dev/docs/multi-agent/)
- [Dotprompt](https://genkit.dev/docs/dotprompt/)
- [GitHub Repository](https://github.com/firebase/genkit)
- [API References](https://genkit.dev/docs/api-references/)
## Examples
### Example 1: Minimal Flow
```typescript
import { googleAI } from '@genkit-ai/google-genai';
import { genkit, z } from 'genkit';
const ai = genkit({ plugins: [googleAI()] });
export const helloFlow = ai.defineFlow(
{
name: 'helloFlow',
inputSchema: z.object({ name: z.string() }),
outputSchema: z.string(),
},
async ({ name }) => {
const { text } = await ai.generate(`Say hello to ${name} in a creative way.`);
return text;
}
);
// Run it
const greeting = await helloFlow({ name: 'World' });
console.log(greeting);
```
### Example 2: Full RAG + Agent Pipeline
```typescript
import { googleAI, textEmbedding004 } from '@genkit-ai/google-genai';
import { devLocalVectorstore } from '@genkit-ai/dev-local-vectorstore';
import { genkit, z } from 'genkit';
const ai = genkit({
plugins: [
googleAI(),
devLocalVectorstore([{ indexName: 'kb', embedder: textEmbedding004 }]),
],
});
// Index knowledge base documents
const indexKnowledgeBase = ai.defineFlow(
{ name: 'indexKB', inputSchema: z.array(z.string()) },
async (texts) => {
await ai.index({
indexer: devLocalVectorstoreIndexer('kb'),
docs: texts.map(text => ({ content: [{ text }] })),
});
}
);
// Answer questions using RAG
export const answerFlow = ai.defineFlow(
{
name: 'answerFlow',
inputSchema: z.object({ question: z.string() }),
outputSchema: z.object({ answer: z.string(), sources: z.number() }),
},
async ({ question }) => {
const docs = await ai.retrieve({
retriever: devLocalVectorstoreRetriever('kb'),
query: question,
options: { k: 5 },
});
const { text } = await ai.generate({
system: 'Answer only from the provided context. If unsure, say so.',
prompt: question,
docs,
});
return { answer: text, sources: docs.length };
}
);
```
### Example 3: Multi-Model Comparison
```typescript
import { googleAI } from '@genkit-ai/google-genai';
import { openAI } from 'genkitx-openai';
import { genkit, z } from 'genkit';
const ai = genkit({ plugins: [googleAI(), openAI()] });
export const compareModelsFlow = ai.defineFlow(
{
name: 'compareModelsFlow',
inputSchema: z.object({ prompt: z.string() }),
outputSchema: z.object({ gemini: z.string(), gpt4o: z.string() }),
},
async ({ prompt }) => {
const [geminiResult, gptResult] = await Promise.all([
ai.generate({ model: googleAI.model('gemini-2.5-flash'), prompt }),
ai.generate({ model: 'openai/gpt-4o', prompt }),
]);
return {
gemini: geminiResult.text,
gpt4o: gptResult.text,
};
}
);
```
This skill helps you build production-ready AI workflows using Firebase Genkit. It provides primitives for type-safe flows, streaming, tool-calling agents, RAG pipelines, and deployment to Firebase or Cloud Run. It supports TypeScript, Go, and Python and integrates model plugins like Gemini, OpenAI, Anthropic, Ollama, and Vertex AI.
You define flows with input/output schemas (Zod or equivalent) and implement AI logic via genkit's generate, generateStream, and tool primitives. Flows are observable and deployable: the Dev UI traces model calls, embeddings, retrievals, and tool executions. Genkit integrates vector stores, prompt files (.prompt), session-backed chat, streaming chunk delivery, and wrappers for Firebase/Express/Cloud Run deployment.
Which languages and model providers are supported?
Genkit supports TypeScript, Go, and Python and plugins for Google AI (Gemini), OpenAI, Anthropic, Ollama, Vertex AI, and others.
How do I deploy flows to production?
Export flows as Firebase onCallGenkit functions, attach secrets, or expose them via expressHandler and deploy to Cloud Run or any HTTP server.
How do I handle long-form or real-time outputs?
Define a flow with streamSchema and use ai.generateStream plus sendChunk to push token chunks to clients, then return the final assembled output.