home / skills / starlitnightly / omicverse / single-preprocessing
This skill guides you through omicverse single-cell preprocessing, QC, HVG detection, normalisation, and embeddings for PBMC3k on CPU, CPU–GPU, or GPU.
npx playbooks add skill starlitnightly/omicverse --skill single-preprocessingReview the files below or copy the command above to add this skill to your agents.
---
name: single-cell-preprocessing-with-omicverse
title: Single-cell preprocessing with omicverse
description: Walk through omicverse's single-cell preprocessing tutorials to QC PBMC3k data, normalise counts, detect HVGs, and run PCA/embedding pipelines on CPU, CPU–GPU mixed, or GPU stacks.
---
# Single-cell preprocessing with omicverse
## Overview
Follow this skill when a user needs to reproduce the preprocessing workflow from the omicverse notebooks [`t_preprocess.ipynb`](../../omicverse_guide/docs/Tutorials-single/t_preprocess.ipynb), [`t_preprocess_cpu.ipynb`](../../omicverse_guide/docs/Tutorials-single/t_preprocess_cpu.ipynb), and [`t_preprocess_gpu.ipynb`](../../omicverse_guide/docs/Tutorials-single/t_preprocess_gpu.ipynb). The tutorials operate on the 10x PBMC3k dataset and cover QC filtering, normalisation, highly variable gene (HVG) detection, dimensionality reduction, and downstream embeddings.
## Instructions
1. **Set up the environment**
- Import `omicverse as ov` and `scanpy as sc`, then call `ov.plot_set(font_path='Arial')` (or `ov.ov_plot_set()` in legacy notebooks) to standardise figure styling.
- Encourage `%load_ext autoreload` and `%autoreload 2` when iterating inside notebooks so code edits propagate without restarting the kernel.
2. **Prepare input data**
- Download the PBMC3k filtered matrix from 10x Genomics (`pbmc3k_filtered_gene_bc_matrices.tar.gz`) and extract it under `data/filtered_gene_bc_matrices/hg19/`.
- Load the matrix via `sc.read_10x_mtx(..., var_names='gene_symbols', cache=True)` and keep a writable folder like `write/` for exports.
3. **Perform quality control (QC)**
- Run `ov.pp.qc(adata, tresh={'mito_perc': 0.2, 'nUMIs': 500, 'detected_genes': 250}, doublets_method='scrublet')` for the CPU/CPU–GPU pipelines; omit `doublets_method` on pure GPU where Scrublet is not yet supported.
- Review the returned AnnData summary to confirm doublet rates and QC thresholds; advise adjusting cut-offs for different species or sequencing depths.
4. **Store raw counts before transformations**
- Call `ov.utils.store_layers(adata, layers='counts')` immediately after QC so the original counts remain accessible for later recovery and comparison.
5. **Normalise and select HVGs**
- Use `ov.pp.preprocess(adata, mode='shiftlog|pearson', n_HVGs=2000, target_sum=5e5)` to apply shift-log normalisation followed by Pearson residual HVG detection (set `target_sum=None` on GPU, which keeps defaults).
- For CPU–GPU mixed runs, demonstrate `ov.pp.recover_counts(...)` to invert normalisation and store reconstructed counts in `adata.layers['recover_counts']`.
6. **Manage `.raw` and layer recovery**
- Snapshot normalised data to `.raw` with `adata.raw = adata` (or `adata.raw = adata.copy()`), and show `ov.utils.retrieve_layers(adata_counts, layers='counts')` to compare normalised vs. raw intensities.
7. **Scale, reduce, and embed**
- Scale features using `ov.pp.scale(adata)` (layers hold scaled matrices) followed by `ov.pp.pca(adata, layer='scaled', n_pcs=50)`.
- Construct neighbourhood graphs with:
- `sc.pp.neighbors(adata, n_neighbors=15, n_pcs=50, use_rep='scaled|original|X_pca')` for the baseline notebook.
- `ov.pp.neighbors(..., use_rep='scaled|original|X_pca')` on CPU–GPU to leverage accelerated routines.
- `ov.pp.neighbors(..., method='cagra')` on GPU to call RAPIDS graph primitives.
- Generate embeddings via `ov.utils.mde(...)`, `ov.pp.umap(adata)`, `ov.pp.mde(...)`, `ov.pp.tsne(...)`, or `ov.pp.sude(...)` depending on the notebook variant.
8. **Cluster and annotate**
- Run `ov.pp.leiden(adata, resolution=1)` or `ov.single.leiden(adata, resolution=1.0)` after neighbour graph construction; CPU–GPU pipelines also showcase `ov.pp.score_genes_cell_cycle` before clustering.
- **IMPORTANT - Defensive checks**: When generating code that plots by clustering results (e.g., `color='leiden'`), always check if the clustering has been performed first:
```python
# Check if leiden clustering exists, if not, run it
if 'leiden' not in adata.obs:
if 'neighbors' not in adata.uns:
ov.pp.neighbors(adata, n_neighbors=15, use_rep='X_pca')
ov.single.leiden(adata, resolution=1.0)
```
- Plot embeddings with `ov.pl.embedding(...)` or `ov.utils.embedding(...)`, colouring by `leiden` clusters and marker genes. Always verify that the column specified in `color=` parameter exists in `adata.obs` before plotting.
9. **Document outputs**
- Encourage saving intermediate AnnData objects (`adata.write('write/pbmc3k_preprocessed.h5ad')`) and figure exports using Matplotlib’s `plt.savefig(...)` to preserve QC summaries and embeddings.
10. **Notebook-specific notes**
- *Baseline (`t_preprocess.ipynb`)*: Focuses on CPU execution with Scanpy neighbours; emphasise storing counts before and after `retrieve_layers` demonstrations.
- *CPU–GPU mixed (`t_preprocess_cpu.ipynb`)*: Highlights Omicverse ≥1.7.0 mixed acceleration. Include timing magics (%%time) to showcase speedups and call out `doublets_method='scrublet'` support.
- *GPU (`t_preprocess_gpu.ipynb`)*: Requires a CUDA-capable GPU, RAPIDS 24.04 stack, and `rapids-singlecell`. Mention the `ov.pp.anndata_to_GPU`/`ov.pp.anndata_to_CPU` transfers and `method='cagra'` neighbours. Note the current warning that pure-GPU pipelines depend on RAPIDS updates.
11. **Troubleshooting tips**
- If `sc.read_10x_mtx` fails, verify the extracted folder structure and ensure gene symbols are available via `var_names='gene_symbols'`.
- Address GPU import errors by confirming the conda environment matches the RAPIDS version for the installed CUDA driver (`nvidia-smi`).
- For `ov.pp.preprocess` dimension mismatches, ensure QC filtered out empty barcodes so HVG selection does not encounter zero-variance features.
- When embeddings lack expected fields (e.g., `scaled|original|X_pca` missing), re-run `ov.pp.scale` and `ov.pp.pca` to rebuild the cached layers.
- **Pipeline dependency errors**: When encountering errors like "Could not find 'leiden' in adata.obs or adata.var_names":
- Always check if required preprocessing steps (neighbors, PCA) exist before dependent operations
- Check if clustering results exist in `adata.obs` before trying to color plots by them
- Use defensive checks in generated code to handle incomplete pipelines gracefully
- **Code generation best practice**: Generate robust code with conditional checks for prerequisites rather than assuming perfect sequential execution. Users may run steps in separate sessions or skip intermediate steps.
## Critical API Reference - Batch Column Handling
### Batch Column Validation - REQUIRED Before Batch Operations
**IMPORTANT**: Always validate and prepare the batch column before any batch-aware operations (batch correction, integration, etc.). Missing or NaN values will cause errors.
**CORRECT usage:**
```python
# Step 1: Check if batch column exists, create default if not
if 'batch' not in adata.obs.columns:
adata.obs['batch'] = 'batch_1' # Default single batch
# Step 2: Handle NaN/missing values - CRITICAL!
adata.obs['batch'] = adata.obs['batch'].fillna('unknown')
# Step 3: Convert to categorical for efficient memory usage
adata.obs['batch'] = adata.obs['batch'].astype('category')
# Now safe to use in batch-aware operations
ov.pp.combat(adata, batch='batch') # or other batch correction methods
```
**WRONG - DO NOT USE:**
```python
# WRONG! Using batch column without validation can cause NaN errors
# ov.pp.combat(adata, batch='batch') # May fail if batch has NaN values!
# WRONG! Assuming batch column exists
# adata.obs['batch'].unique() # KeyError if column doesn't exist!
```
### Common Batch-Related Pitfalls
1. **NaN values in batch column**: Always use `fillna()` before batch operations
2. **Missing batch column**: Always check existence before use
3. **Non-categorical batch**: Convert to category for memory efficiency
4. **Mixed data types**: Ensure consistent string type before categorization
```python
# Complete defensive batch preparation pattern:
def prepare_batch_column(adata, batch_key='batch', default_batch='batch_1'):
"""Prepare batch column for batch-aware operations."""
if batch_key not in adata.obs.columns:
adata.obs[batch_key] = default_batch
adata.obs[batch_key] = adata.obs[batch_key].fillna('unknown')
adata.obs[batch_key] = adata.obs[batch_key].astype(str).astype('category')
return adata
```
## Highly Variable Genes (HVG) - Small Dataset Handling
### LOESS Failure with Small Batches
**IMPORTANT**: The `seurat_v3` HVG flavor uses LOESS regression which fails on small datasets or small per-batch subsets (<500 cells per batch). This manifests as:
```
ValueError: Extrapolation not allowed with blending
```
**CORRECT - Use try/except fallback pattern:**
```python
# Robust HVG selection for any dataset size
try:
sc.pp.highly_variable_genes(
adata,
flavor='seurat_v3',
n_top_genes=2000,
batch_key='batch' # if batch correction is needed
)
except ValueError as e:
if 'Extrapolation' in str(e) or 'LOESS' in str(e):
# Fallback to simpler method for small datasets
sc.pp.highly_variable_genes(
adata,
flavor='seurat', # Works with any size
n_top_genes=2000
)
else:
raise
```
**Alternative - Use cell_ranger flavor for batch-aware HVG:**
```python
# cell_ranger flavor is more robust for batched data
sc.pp.highly_variable_genes(
adata,
flavor='cell_ranger', # No LOESS, works with batches
n_top_genes=2000,
batch_key='batch'
)
```
### Best Practices for Batch-Aware HVG
1. **Check batch sizes before HVG**: Small batches (<500 cells) will cause LOESS to fail
2. **Prefer `seurat` or `cell_ranger`** when batch sizes vary significantly
3. **Use `seurat_v3` only** when all batches have >500 cells
4. **Always wrap in try/except** when dataset size is unknown
```python
# Safe batch-aware HVG pattern
def safe_highly_variable_genes(adata, batch_key='batch', n_top_genes=2000):
"""Select HVGs with automatic fallback for small batches."""
try:
sc.pp.highly_variable_genes(
adata, flavor='seurat_v3', n_top_genes=n_top_genes, batch_key=batch_key
)
except ValueError:
# Fallback for small batches
sc.pp.highly_variable_genes(
adata, flavor='seurat', n_top_genes=n_top_genes
)
```
## Examples
- "Download PBMC3k counts, run QC with Scrublet, normalise with `shiftlog|pearson`, and compute MDE + UMAP embeddings on CPU."
- "Set up the mixed CPU–GPU workflow in a fresh conda env, recover raw counts after normalisation, and score cell cycle phases before Leiden clustering."
- "Provision a RAPIDS environment, transfer AnnData to GPU, run `method='cagra'` neighbours, and return embeddings to CPU for plotting."
## References
- Detailed walkthrough notebooks: [`t_preprocess.ipynb`](../../omicverse_guide/docs/Tutorials-single/t_preprocess.ipynb), [`t_preprocess_cpu.ipynb`](../../omicverse_guide/docs/Tutorials-single/t_preprocess_cpu.ipynb), [`t_preprocess_gpu.ipynb`](../../omicverse_guide/docs/Tutorials-single/t_preprocess_gpu.ipynb)
- Quick copy/paste commands: [`reference.md`](reference.md)
This skill guides reproducible single-cell preprocessing using omicverse notebooks on the 10x PBMC3k dataset. It covers QC, storing raw counts, normalisation, HVG detection, scaling, PCA, neighbour graph construction, embeddings, and clustering across CPU, CPU–GPU mixed, and GPU stacks. Practical checks and batch-handling patterns are included to avoid common failures.
The workflow loads 10x PBMC3k into an AnnData object, runs omicverse QC (optionally with Scrublet), snapshots raw counts, then normalises and selects HVGs (shift-log + Pearson residuals by default). It scales features, computes PCA, builds neighbours (Scanpy or omicverse/RAPIDS depending on stack), generates embeddings (UMAP, MDE, t-SNE), and runs Leiden clustering with defensive existence checks.
What if HVG selection fails with a LOESS error?
Wrap sc.pp.highly_variable_genes in try/except and fallback to flavor='seurat' or use flavor='cell_ranger' for batch-aware selection; prefer seurat_v3 only for batches >500 cells.
How do I avoid batch-related errors?
Always prepare the batch column: create it if missing, fill NaN with 'unknown', cast to string then category, then run batch-aware methods like ov.pp.combat.