home / skills / sstobo / convex-skills / convex-agents-debugging
This skill helps debugging convex agents by logging LLM requests, inspecting context, and auditing data to diagnose unexpected behavior.
npx playbooks add skill sstobo/convex-skills --skill convex-agents-debuggingReview the files below or copy the command above to add this skill to your agents.
---
name: "Convex Agents Debugging"
description: "Troubleshoots agent behavior, logs LLM interactions, and inspects database state. Use this when responses are unexpected, to understand context the LLM receives, or to diagnose data issues."
---
## Purpose
Debugging tools help understand what's happening inside agents, what the LLM receives, and what's stored. Essential for developing reliable agent applications.
## When to Use This Skill
- Agent behavior is unexpected
- LLM responses are off-target
- Investigating why certain context isn't being used
- Understanding message ordering
- Checking file storage and references
- Auditing tool calls and results
- Profiling token usage
## Log Raw LLM Requests and Responses
```typescript
const myAgent = new Agent(components.agent, {
name: "My Agent",
languageModel: openai.chat("gpt-4o-mini"),
rawRequestResponseHandler: async (ctx, { request, response }) => {
console.log("LLM Request:", JSON.stringify(request, null, 2));
console.log("LLM Response:", JSON.stringify(response, null, 2));
await ctx.runMutation(internal.logging.saveLLMCall, {
request,
response,
timestamp: Date.now(),
});
},
});
```
## Log Context Messages
See exactly what context the LLM receives:
```typescript
const myAgent = new Agent(components.agent, {
name: "My Agent",
languageModel: openai.chat("gpt-4o-mini"),
contextHandler: async (ctx, args) => {
console.log("Context Messages:", {
recent: args.recent.length,
search: args.search.length,
input: args.inputMessages.length,
});
args.allMessages.forEach((msg, i) => {
console.log(`Message ${i}:`, {
role: msg.role,
contentLength: typeof msg.content === "string"
? msg.content.length
: JSON.stringify(msg.content).length,
});
});
return args.allMessages;
},
});
```
## Inspect Database Tables
Query agent data directly:
```typescript
export const getThreadMessages = query({
args: { threadId: v.string() },
handler: async (ctx, { threadId }) => {
return await ctx.db
.query(components.agent.tables.messages)
.filter((msg) => msg.threadId === threadId)
.collect();
},
});
```
## Fetch Context Manually
Inspect what context would be used:
```typescript
import { fetchContextWithPrompt } from "@convex-dev/agent";
export const inspectContext = action({
args: { threadId: v.string(), prompt: v.string() },
handler: async (ctx, { threadId, prompt }) => {
const { messages } = await fetchContextWithPrompt(ctx, components.agent, {
threadId,
prompt,
});
return {
contextMessages: messages.length,
messages: messages.map((msg) => ({
role: msg.role,
contentType: typeof msg.content,
})),
};
},
});
```
## Trace Tool Calls
Log all tool invocations:
```typescript
export const myTool = createTool({
description: "My tool",
args: z.object({ query: z.string() }),
handler: async (ctx, { query }): Promise<string> => {
console.log("[TOOL] myTool called with:", query);
const result = await someOperation(query);
console.log("[TOOL] myTool returned:", result);
return result;
},
});
```
## Fix Type Errors
Common circular reference issue:
```typescript
// WRONG - no return type
export const myFunction = action({
args: { prompt: v.string() },
handler: async (ctx, { prompt }) => {
return await someLogic();
},
});
// CORRECT - explicit return type
export const myFunction = action({
args: { prompt: v.string() },
returns: v.string(),
handler: async (ctx, { prompt }): Promise<string> => {
return await someLogic();
},
});
```
## Analyze Message Structure
Debug message ordering:
```typescript
export const analyzeMessages = query({
args: { threadId: v.string() },
handler: async (ctx, { threadId }) => {
const messages = await listMessages(ctx, components.agent, {
threadId,
paginationOpts: { cursor: null, numItems: 100 },
});
return messages.results.map((msg) => ({
order: msg.order,
stepOrder: msg.stepOrder,
role: msg.message.role,
status: msg.status,
}));
},
});
```
## Key Principles
- **Log early**: Capture data while developing
- **Use console for quick checks**: Fast iteration
- **Save important events**: Archive LLM calls for analysis
- **Explicit return types**: Prevents circular references
- **Dashboard inspection**: Easiest way to see database state
## Next Steps
- See **playground** for interactive debugging
- See **fundamentals** for agent setup
- See **context** for context-aware debugging
This skill helps troubleshoot agent behavior by capturing LLM interactions, inspecting the context sent to models, and examining agent database state. It provides concrete hooks to log raw requests/responses, trace tool calls, and fetch the exact context used for a prompt. Use it to quickly pinpoint why an agent produced unexpected or off-target results.
You enable handlers that capture LLM requests/responses and context construction, then persist or print those artifacts for analysis. The skill also includes examples for querying agent message tables, tracing tool invocations, and fetching the assembled context for a given thread and prompt. Together these techniques reveal message ordering, token usage, storage references, and tool outputs that influence behavior.
How do I see the exact messages the model received?
Enable a contextHandler to log allMessages or use fetchContextWithPrompt to retrieve the assembled context for a thread and prompt.
Where should I store LLM calls for later analysis?
Persist raw request/response objects using your app database or a logging table so you can replay, filter, and audit calls over time.