home / skills / smallnest / langgraphgo / coze-api

This skill helps you integrate and operate the Coze AI API for chat and workflows, simplifying token setup, bot ID handling, and streaming choices.

npx playbooks add skill smallnest/langgraphgo --skill coze-api

Review the files below or copy the command above to add this skill to your agents.

Files (3)
SKILL.md
12.2 KB
---
name: coze-api
description: 调用扣子(Coze)智能体 API 进行对话、工作流执行等操作。当用户需要集成 Coze 智能体、调用 Coze API、或开发 Coze 相关应用时使用。支持流式和非流式对话、工作流调用等功能。
---

# Coze API 集成 Skill

扣子(Coze)是字节跳动推出的 AI 智能体开发平台,本 Skill 提供完整的 Coze API 调用指南。

## 核心功能

1. **对话 API (Chat API)** - 与智能体进行对话
2. **工作流 API (Workflow API)** - 执行工作流
3. **消息管理** - 查询对话状态和消息列表

## 快速开始

### 1. 准备工作

在使用 Coze API 前需要完成以下准备:

**获取访问令牌 (Personal Access Token)**
1. 登录 Coze 平台: https://www.coze.cn
2. 进入个人中心 → API 管理
3. 创建个人访问令牌(PAT)
4. 保存令牌(仅显示一次)

**获取 Bot ID**
1. 进入 Bot 编辑页面
2. 从 URL 中获取 Bot ID
   - 例如: `https://www.coze.cn/space/123/bot/7348293334`
   - Bot ID 为: `7348293334`

**发布 Bot 为 API 服务**
1. 在 Bot 页面点击"发布"
2. 选择"Bot as API"
3. 等待审核通过

### 2. API 基础信息

**API 基础 URL**
- 国内版: `https://api.coze.cn`
- API 版本: v3(推荐)

**认证方式**
```
Authorization: Bearer {YOUR_PAT_TOKEN}
Content-Type: application/json
```

**使用限制**
- 基础版: 每账号 100 次 API 调用(一次性)
- 专业版: 无限制,按 Token 消耗计费

## 对话 API (Chat API)

### 非流式对话

发起一次完整对话,等待完整结果后返回。

**API 端点**
```
POST https://api.coze.cn/v3/chat
```

**Python 示例代码**
```python
import requests
import json

API_URL = "https://api.coze.cn/v3/chat"
RETRIEVE_URL = "https://api.coze.cn/v3/chat/retrieve"
MESSAGE_LIST_URL = "https://api.coze.cn/v3/chat/message/list"

# 配置参数
PAT_TOKEN = "YOUR_PAT_TOKEN"
BOT_ID = "YOUR_BOT_ID"
USER_ID = "unique_user_id"

def send_message(message):
    """发起对话"""
    headers = {
        "Authorization": f"Bearer {PAT_TOKEN}",
        "Content-Type": "application/json"
    }
    
    data = {
        "bot_id": BOT_ID,
        "user_id": USER_ID,
        "stream": False,
        "auto_save_history": True,
        "additional_messages": [
            {
                "role": "user",
                "content": message,
                "content_type": "text"
            }
        ]
    }
    
    response = requests.post(API_URL, headers=headers, json=data)
    return response.json()

def check_status(conversation_id, chat_id):
    """查询对话状态"""
    headers = {
        "Authorization": f"Bearer {PAT_TOKEN}",
        "Content-Type": "application/json"
    }
    
    params = {
        "conversation_id": conversation_id,
        "chat_id": chat_id
    }
    
    response = requests.get(RETRIEVE_URL, headers=headers, params=params)
    return response.json()

def get_messages(conversation_id, chat_id):
    """获取对话消息"""
    headers = {
        "Authorization": f"Bearer {PAT_TOKEN}",
        "Content-Type": "application/json"
    }
    
    params = {
        "conversation_id": conversation_id,
        "chat_id": chat_id
    }
    
    response = requests.get(MESSAGE_LIST_URL, headers=headers, params=params)
    return response.json()

# 使用示例
result = send_message("你好,请介绍一下自己")
print(json.dumps(result, ensure_ascii=False, indent=2))
```

### 流式对话

实时接收 AI 回复,类似打字机效果。

**Python 示例代码**
```python
import requests
import json

def stream_chat(message):
    """流式对话"""
    headers = {
        "Authorization": f"Bearer {PAT_TOKEN}",
        "Content-Type": "application/json"
    }
    
    data = {
        "bot_id": BOT_ID,
        "user_id": USER_ID,
        "stream": True,
        "auto_save_history": False,  # 流式时必须为 False
        "additional_messages": [
            {
                "role": "user",
                "content": message,
                "content_type": "text"
            }
        ]
    }
    
    response = requests.post(API_URL, headers=headers, json=data, stream=True)
    
    # 处理流式响应
    for line in response.iter_lines():
        if line:
            line_str = line.decode('utf-8')
            
            # 跳过非 data 行
            if not line_str.startswith('data:'):
                continue
                
            # 提取 JSON 数据
            json_str = line_str.split('data:', 1)[1].strip()
            
            try:
                data = json.loads(json_str)
                
                # 处理消息事件
                if data.get('event') == 'conversation.message.delta':
                    content = data.get('data', {}).get('content', '')
                    print(content, end='', flush=True)
                    
                # 处理完成事件
                elif data.get('event') == 'conversation.message.completed':
                    print("\n[对话完成]")
                    
            except json.JSONDecodeError:
                continue

# 使用示例
stream_chat("写一首关于春天的诗")
```

### 重要参数说明

**请求参数**
- `bot_id` (必填): Bot 的唯一标识符
- `user_id` (必填): 用户标识符,用于区分不同用户
- `stream` (必填): 是否使用流式输出
  - `true`: 流式输出,`auto_save_history` 必须为 `false`
  - `false`: 非流式输出,`auto_save_history` 必须为 `true`
- `auto_save_history`: 是否自动保存历史记录
- `additional_messages`: 消息数组
  - `role`: 角色,通常为 "user"
  - `content`: 消息内容
  - `content_type`: 内容类型,通常为 "text"
- `conversation_id` (可选): 对话 ID,用于继续之前的对话

**响应字段**
- `conversation_id`: 对话 ID
- `chat_id`: 本次对话的 ID
- `status`: 对话状态
  - `in_progress`: 处理中
  - `completed`: 已完成
  - `failed`: 失败

## 工作流 API

执行已发布的工作流。

**API 端点**
```
POST https://api.coze.cn/v3/workflows/run
```

**Python 示例代码**
```python
import requests
import json

WORKFLOW_RUN_URL = "https://api.coze.cn/v3/workflows/run"

def run_workflow(workflow_id, parameters):
    """执行工作流"""
    headers = {
        "Authorization": f"Bearer {PAT_TOKEN}",
        "Content-Type": "application/json"
    }
    
    data = {
        "workflow_id": workflow_id,
        "parameters": parameters
    }
    
    response = requests.post(WORKFLOW_RUN_URL, headers=headers, json=data)
    return response.json()

# 使用示例
workflow_id = "73xxx47"
params = {
    "input_text": "需要处理的文本",
    "option": "选项A"
}

result = run_workflow(workflow_id, params)
print(json.dumps(result, ensure_ascii=False, indent=2))
```

## 完整示例: 轮询获取对话结果

非流式对话需要轮询查询状态,直到对话完成。

```python
import requests
import time
import json

def chat_with_polling(message, max_retries=30, interval=2):
    """
    发起对话并轮询获取结果
    
    Args:
        message: 用户消息
        max_retries: 最大重试次数
        interval: 轮询间隔(秒)
    """
    headers = {
        "Authorization": f"Bearer {PAT_TOKEN}",
        "Content-Type": "application/json"
    }
    
    # 1. 发起对话
    data = {
        "bot_id": BOT_ID,
        "user_id": USER_ID,
        "stream": False,
        "auto_save_history": True,
        "additional_messages": [
            {
                "role": "user",
                "content": message,
                "content_type": "text"
            }
        ]
    }
    
    response = requests.post(API_URL, headers=headers, json=data)
    result = response.json()
    
    if response.status_code != 200:
        print(f"发起对话失败: {result}")
        return None
    
    conversation_id = result['data']['conversation_id']
    chat_id = result['data']['id']
    
    print(f"对话已创建: conversation_id={conversation_id}, chat_id={chat_id}")
    
    # 2. 轮询查询状态
    retrieve_url = f"https://api.coze.cn/v3/chat/retrieve"
    params = {
        "conversation_id": conversation_id,
        "chat_id": chat_id
    }
    
    for i in range(max_retries):
        time.sleep(interval)
        
        status_response = requests.get(retrieve_url, headers=headers, params=params)
        status_data = status_response.json()
        
        status = status_data['data']['status']
        print(f"查询状态 [{i+1}/{max_retries}]: {status}")
        
        if status == "completed":
            # 3. 获取消息列表
            message_url = f"https://api.coze.cn/v3/chat/message/list"
            message_response = requests.get(message_url, headers=headers, params=params)
            message_data = message_response.json()
            
            # 提取 AI 回复
            messages = message_data['data']
            for msg in messages:
                if msg['role'] == 'assistant' and msg['type'] == 'answer':
                    print("\n=== AI 回复 ===")
                    print(msg['content'])
                    return msg['content']
            
        elif status == "failed":
            print("对话失败")
            return None
    
    print("轮询超时")
    return None

# 使用示例
response = chat_with_polling("介绍一下人工智能的发展历史")
```

## 错误处理

### 常见错误码

- `400` - 请求参数错误
  - 检查 `bot_id` 是否正确
  - 检查 `stream` 和 `auto_save_history` 的组合是否正确
  
- `401` - 认证失败
  - 检查 PAT Token 是否正确
  - 检查 Authorization 头格式是否正确

- `403` - 权限不足
  - 检查 Bot 是否已发布为 API 服务
  - 检查账号是否有权限访问该 Bot

- `429` - 请求频率限制
  - 基础版达到 100 次限制
  - 降低请求频率

- `500` - 服务器错误
  - 稍后重试

### 错误处理示例

```python
def safe_api_call(func, *args, **kwargs):
    """安全的 API 调用"""
    try:
        result = func(*args, **kwargs)
        return result
    except requests.exceptions.RequestException as e:
        print(f"请求错误: {e}")
        return None
    except json.JSONDecodeError as e:
        print(f"JSON 解析错误: {e}")
        return None
    except Exception as e:
        print(f"未知错误: {e}")
        return None
```

## 最佳实践

### 1. 管理对话上下文

使用 `conversation_id` 维持多轮对话:

```python
def multi_turn_chat(conversation_id=None):
    """多轮对话"""
    data = {
        "bot_id": BOT_ID,
        "user_id": USER_ID,
        "stream": False,
        "auto_save_history": True,
        "additional_messages": [
            {
                "role": "user",
                "content": "继续我们的对话",
                "content_type": "text"
            }
        ]
    }
    
    # 如果有 conversation_id,继续之前的对话
    if conversation_id:
        data["conversation_id"] = conversation_id
    
    # ... 发送请求
```

### 2. 选择合适的响应模式

- **非流式 (`stream=False`)**: 适合需要完整结果的场景
  - 数据分析
  - 批量处理
  - API 集成

- **流式 (`stream=True`)**: 适合交互式场景
  - 聊天应用
  - 实时反馈
  - 用户体验优先

### 3. 合理设置超时

```python
response = requests.post(
    API_URL, 
    headers=headers, 
    json=data,
    timeout=30  # 设置 30 秒超时
)
```

### 4. 使用自定义变量

在对话中传递上下文信息:

```python
data = {
    "bot_id": BOT_ID,
    "user_id": USER_ID,
    "stream": False,
    "auto_save_history": True,
    "additional_messages": [...],
    "custom_variables": {
        "user_name": "张三",
        "company": "ABC公司",
        "department": "技术部"
    }
}
```

## 参考资料

- **官方文档**: https://www.coze.cn/open/docs/developer_guides/coze_api_overview
- **开发者平台**: https://www.coze.cn/open/playground
- **API 参考**: https://www.coze.cn/docs/developer_guides/chat_v3

## 注意事项

1. **Token 安全**: 不要在代码中硬编码 PAT Token,使用环境变量或配置文件
2. **费用管理**: 专业版按 Token 消耗计费,注意监控使用量
3. **版本更新**: API 可能更新,建议定期查看官方文档
4. **流式限制**: 流式模式下 `auto_save_history` 必须为 `false`
5. **用户标识**: 使用唯一的 `user_id` 区分不同用户,便于追踪和管理

Overview

This skill integrates with the Coze API to run conversations, execute published workflows, and manage messages. It provides examples and practical guidance for both streaming and non-streaming chat, polling for results, and invoking workflows programmatically. The examples focus on clear authentication, request patterns, and common error handling.

How this skill works

The skill sends HTTP requests to Coze endpoints (v3) using a Personal Access Token for Bearer authentication. It supports non-streaming chats that return full responses and streaming chats that emit incremental events. It also calls the workflows/run endpoint to trigger published workflows and uses message/list and retrieve endpoints to inspect conversation state and messages.

When to use it

  • You need to embed a Coze bot into a server-side application or backend service.
  • You want real-time responses for chat UI using streaming mode.
  • You need reliable, full responses for batch jobs or data processing (non-streaming).
  • You want to trigger and monitor published Coze workflows from your code.
  • You need to query conversation status or fetch historical messages programmatically.

Best practices

  • Store PAT tokens securely in environment variables or a secrets manager; never hard-code tokens.
  • Choose stream=true for interactive UIs and stream=false with polling for batch or analytic flows.
  • Respect the stream + auto_save_history constraint: stream=true requires auto_save_history=false.
  • Implement retry, backoff, and error handling for 4xx/5xx responses and rate limits (429).
  • Use conversation_id to maintain context across multiple turns and users with unique user_id values.

Example use cases

  • A chat widget that uses stream=true to display token-by-token assistant output.
  • A backend job that uses stream=false and polling to collect completed responses for analysis.
  • An automation service that triggers a published workflow and processes its returned result.
  • A monitoring tool that fetches message lists and conversation status to audit bot interactions.

FAQ

How do I authenticate requests?

Include Authorization: Bearer {YOUR_PAT_TOKEN} and Content-Type: application/json in request headers.

When should I poll vs use streaming?

Use streaming for interactive, low-latency UIs. Use polling (non-streaming) when you need a complete response for batch processing or when streaming is not feasible.