home / skills / skillcreatorai / ai-agent-skills / llm-application-dev
This skill helps you build AI-powered applications by guiding prompt engineering, RAG patterns, and LLM integrations for chatbots and automation.
npx playbooks add skill skillcreatorai/ai-agent-skills --skill llm-application-devReview the files below or copy the command above to add this skill to your agents.
---
name: llm-application-dev
description: Building applications with Large Language Models - prompt engineering, RAG patterns, and LLM integration. Use for AI-powered features, chatbots, or LLM-based automation.
source: wshobson/agents
license: MIT
---
# LLM Application Development
## Prompt Engineering
### Structured Prompts
```typescript
const systemPrompt = `You are a helpful assistant that answers questions about our product.
RULES:
- Only answer questions about our product
- If you don't know, say "I don't know"
- Keep responses concise (under 100 words)
- Never make up information
CONTEXT:
{context}`;
const userPrompt = `Question: {question}`;
```
### Few-Shot Examples
```typescript
const prompt = `Classify the sentiment of customer feedback.
Examples:
Input: "Love this product!"
Output: positive
Input: "Worst purchase ever"
Output: negative
Input: "It works fine"
Output: neutral
Input: "${customerFeedback}"
Output:`;
```
### Chain of Thought
```typescript
const prompt = `Solve this step by step:
Question: ${question}
Let's think through this:
1. First, identify the key information
2. Then, determine the approach
3. Finally, calculate the answer
Step-by-step solution:`;
```
## API Integration
### OpenAI Pattern
```typescript
import OpenAI from 'openai';
const openai = new OpenAI({ apiKey: process.env.OPENAI_API_KEY });
async function chat(messages: Message[]): Promise<string> {
const response = await openai.chat.completions.create({
model: 'gpt-4',
messages,
temperature: 0.7,
max_tokens: 500,
});
return response.choices[0].message.content ?? '';
}
```
### Anthropic Pattern
```typescript
import Anthropic from '@anthropic-ai/sdk';
const anthropic = new Anthropic({ apiKey: process.env.ANTHROPIC_API_KEY });
async function chat(prompt: string): Promise<string> {
const response = await anthropic.messages.create({
model: 'claude-3-opus-20240229',
max_tokens: 1024,
messages: [{ role: 'user', content: prompt }],
});
return response.content[0].type === 'text'
? response.content[0].text
: '';
}
```
### Streaming Responses
```typescript
async function* streamChat(prompt: string) {
const stream = await openai.chat.completions.create({
model: 'gpt-4',
messages: [{ role: 'user', content: prompt }],
stream: true,
});
for await (const chunk of stream) {
const content = chunk.choices[0]?.delta?.content;
if (content) yield content;
}
}
```
## RAG (Retrieval-Augmented Generation)
### Basic RAG Pipeline
```typescript
async function ragQuery(question: string): Promise<string> {
// 1. Embed the question
const questionEmbedding = await embedText(question);
// 2. Search vector database
const relevantDocs = await vectorDb.search(questionEmbedding, { limit: 5 });
// 3. Build context
const context = relevantDocs.map(d => d.content).join('\n\n');
// 4. Generate answer
const prompt = `Answer based on this context:\n${context}\n\nQuestion: ${question}`;
return await chat(prompt);
}
```
### Document Chunking
```typescript
function chunkDocument(text: string, options: ChunkOptions): string[] {
const { chunkSize = 1000, overlap = 200 } = options;
const chunks: string[] = [];
let start = 0;
while (start < text.length) {
const end = Math.min(start + chunkSize, text.length);
chunks.push(text.slice(start, end));
start += chunkSize - overlap;
}
return chunks;
}
```
### Embedding Storage
```typescript
// Using Supabase with pgvector
async function storeEmbeddings(docs: Document[]) {
for (const doc of docs) {
const embedding = await embedText(doc.content);
await supabase.from('documents').insert({
content: doc.content,
metadata: doc.metadata,
embedding: embedding, // vector column
});
}
}
async function searchSimilar(query: string, limit = 5) {
const embedding = await embedText(query);
const { data } = await supabase.rpc('match_documents', {
query_embedding: embedding,
match_count: limit,
});
return data;
}
```
## Error Handling
```typescript
async function safeLLMCall<T>(
fn: () => Promise<T>,
options: { retries?: number; fallback?: T }
): Promise<T> {
const { retries = 3, fallback } = options;
for (let i = 0; i < retries; i++) {
try {
return await fn();
} catch (error) {
if (error.status === 429) {
// Rate limit - exponential backoff
await sleep(Math.pow(2, i) * 1000);
continue;
}
if (i === retries - 1) {
if (fallback !== undefined) return fallback;
throw error;
}
}
}
throw new Error('Max retries exceeded');
}
```
## Best Practices
- **Token Management**: Track usage and set limits
- **Caching**: Cache embeddings and common queries
- **Evaluation**: Test prompts with diverse inputs
- **Guardrails**: Validate outputs before using
- **Logging**: Log prompts and responses for debugging
- **Cost Control**: Use cheaper models for simple tasks
- **Latency**: Stream responses for better UX
- **Privacy**: Don't send PII to external APIs
This skill explains building applications with large language models, covering prompt engineering, RAG patterns, API integration, streaming, and error handling. It focuses on practical patterns for chatbots, retrieval-augmented features, and safe, cost-aware LLM integration. The content is implementation-oriented and geared for production use.
It describes structured prompt patterns (system/user, few-shot, chain-of-thought) and shows how to call LLM APIs, handle streaming, and implement retries and backoff. For RAG, it covers embedding, vector search, document chunking, and storing embeddings for similarity search. It also outlines operational practices like token management, caching, evaluation, logging, and privacy safeguards.
How do I avoid hallucinations in retrieval-based answers?
Use RAG: retrieve relevant documents and include only sourced context in the prompt. Enforce guardrails in the system prompt to say "I don’t know" when evidence is lacking and validate outputs against source metadata.
When should I stream responses versus return full completions?
Stream when latency and UX matter (chat, typing effect, long outputs). Use full completions for short synchronous calls or when you need the entire output for post-processing.