home / skills / sickn33 / antigravity-awesome-skills / azure-speech-to-text-rest-py
This skill transcribes short Azure Speech to Text audio (up to 60 seconds) via REST API without the SDK.
npx playbooks add skill sickn33/antigravity-awesome-skills --skill azure-speech-to-text-rest-pyReview the files below or copy the command above to add this skill to your agents.
---
name: azure-speech-to-text-rest-py
description: |
Azure Speech to Text REST API for short audio (Python). Use for simple speech recognition of audio files up to 60 seconds without the Speech SDK.
Triggers: "speech to text REST", "short audio transcription", "speech recognition REST API", "STT REST", "recognize speech REST".
DO NOT USE FOR: Long audio (>60 seconds), real-time streaming, batch transcription, custom speech models, speech translation. Use Speech SDK or Batch Transcription API instead.
---
# Azure Speech to Text REST API for Short Audio
Simple REST API for speech-to-text transcription of short audio files (up to 60 seconds). No SDK required - just HTTP requests.
## Prerequisites
1. **Azure subscription** - [Create one free](https://azure.microsoft.com/free/)
2. **Speech resource** - Create in [Azure Portal](https://portal.azure.com/#create/Microsoft.CognitiveServicesSpeechServices)
3. **Get credentials** - After deployment, go to resource > Keys and Endpoint
## Environment Variables
```bash
# Required
AZURE_SPEECH_KEY=<your-speech-resource-key>
AZURE_SPEECH_REGION=<region> # e.g., eastus, westus2, westeurope
# Alternative: Use endpoint directly
AZURE_SPEECH_ENDPOINT=https://<region>.stt.speech.microsoft.com
```
## Installation
```bash
pip install requests
```
## Quick Start
```python
import os
import requests
def transcribe_audio(audio_file_path: str, language: str = "en-US") -> dict:
"""Transcribe short audio file (max 60 seconds) using REST API."""
region = os.environ["AZURE_SPEECH_REGION"]
api_key = os.environ["AZURE_SPEECH_KEY"]
url = f"https://{region}.stt.speech.microsoft.com/speech/recognition/conversation/cognitiveservices/v1"
headers = {
"Ocp-Apim-Subscription-Key": api_key,
"Content-Type": "audio/wav; codecs=audio/pcm; samplerate=16000",
"Accept": "application/json"
}
params = {
"language": language,
"format": "detailed" # or "simple"
}
with open(audio_file_path, "rb") as audio_file:
response = requests.post(url, headers=headers, params=params, data=audio_file)
response.raise_for_status()
return response.json()
# Usage
result = transcribe_audio("audio.wav", "en-US")
print(result["DisplayText"])
```
## Audio Requirements
| Format | Codec | Sample Rate | Notes |
|--------|-------|-------------|-------|
| WAV | PCM | 16 kHz, mono | **Recommended** |
| OGG | OPUS | 16 kHz, mono | Smaller file size |
**Limitations:**
- Maximum 60 seconds of audio
- For pronunciation assessment: maximum 30 seconds
- No partial/interim results (final only)
## Content-Type Headers
```python
# WAV PCM 16kHz
"Content-Type": "audio/wav; codecs=audio/pcm; samplerate=16000"
# OGG OPUS
"Content-Type": "audio/ogg; codecs=opus"
```
## Response Formats
### Simple Format (default)
```python
params = {"language": "en-US", "format": "simple"}
```
```json
{
"RecognitionStatus": "Success",
"DisplayText": "Remind me to buy 5 pencils.",
"Offset": "1236645672289",
"Duration": "1236645672289"
}
```
### Detailed Format
```python
params = {"language": "en-US", "format": "detailed"}
```
```json
{
"RecognitionStatus": "Success",
"Offset": "1236645672289",
"Duration": "1236645672289",
"NBest": [
{
"Confidence": 0.9052885,
"Display": "What's the weather like?",
"ITN": "what's the weather like",
"Lexical": "what's the weather like",
"MaskedITN": "what's the weather like"
}
]
}
```
## Chunked Transfer (Recommended)
For lower latency, stream audio in chunks:
```python
import os
import requests
def transcribe_chunked(audio_file_path: str, language: str = "en-US") -> dict:
"""Stream audio in chunks for lower latency."""
region = os.environ["AZURE_SPEECH_REGION"]
api_key = os.environ["AZURE_SPEECH_KEY"]
url = f"https://{region}.stt.speech.microsoft.com/speech/recognition/conversation/cognitiveservices/v1"
headers = {
"Ocp-Apim-Subscription-Key": api_key,
"Content-Type": "audio/wav; codecs=audio/pcm; samplerate=16000",
"Accept": "application/json",
"Transfer-Encoding": "chunked",
"Expect": "100-continue"
}
params = {"language": language, "format": "detailed"}
def generate_chunks(file_path: str, chunk_size: int = 1024):
with open(file_path, "rb") as f:
while chunk := f.read(chunk_size):
yield chunk
response = requests.post(
url,
headers=headers,
params=params,
data=generate_chunks(audio_file_path)
)
response.raise_for_status()
return response.json()
```
## Authentication Options
### Option 1: Subscription Key (Simple)
```python
headers = {
"Ocp-Apim-Subscription-Key": os.environ["AZURE_SPEECH_KEY"]
}
```
### Option 2: Bearer Token
```python
import requests
import os
def get_access_token() -> str:
"""Get access token from the token endpoint."""
region = os.environ["AZURE_SPEECH_REGION"]
api_key = os.environ["AZURE_SPEECH_KEY"]
token_url = f"https://{region}.api.cognitive.microsoft.com/sts/v1.0/issueToken"
response = requests.post(
token_url,
headers={
"Ocp-Apim-Subscription-Key": api_key,
"Content-Type": "application/x-www-form-urlencoded",
"Content-Length": "0"
}
)
response.raise_for_status()
return response.text
# Use token in requests (valid for 10 minutes)
token = get_access_token()
headers = {
"Authorization": f"Bearer {token}",
"Content-Type": "audio/wav; codecs=audio/pcm; samplerate=16000",
"Accept": "application/json"
}
```
## Query Parameters
| Parameter | Required | Values | Description |
|-----------|----------|--------|-------------|
| `language` | **Yes** | `en-US`, `de-DE`, etc. | Language of speech |
| `format` | No | `simple`, `detailed` | Result format (default: simple) |
| `profanity` | No | `masked`, `removed`, `raw` | Profanity handling (default: masked) |
## Recognition Status Values
| Status | Description |
|--------|-------------|
| `Success` | Recognition succeeded |
| `NoMatch` | Speech detected but no words matched |
| `InitialSilenceTimeout` | Only silence detected |
| `BabbleTimeout` | Only noise detected |
| `Error` | Internal service error |
## Profanity Handling
```python
# Mask profanity with asterisks (default)
params = {"language": "en-US", "profanity": "masked"}
# Remove profanity entirely
params = {"language": "en-US", "profanity": "removed"}
# Include profanity as-is
params = {"language": "en-US", "profanity": "raw"}
```
## Error Handling
```python
import requests
def transcribe_with_error_handling(audio_path: str, language: str = "en-US") -> dict | None:
"""Transcribe with proper error handling."""
region = os.environ["AZURE_SPEECH_REGION"]
api_key = os.environ["AZURE_SPEECH_KEY"]
url = f"https://{region}.stt.speech.microsoft.com/speech/recognition/conversation/cognitiveservices/v1"
try:
with open(audio_path, "rb") as audio_file:
response = requests.post(
url,
headers={
"Ocp-Apim-Subscription-Key": api_key,
"Content-Type": "audio/wav; codecs=audio/pcm; samplerate=16000",
"Accept": "application/json"
},
params={"language": language, "format": "detailed"},
data=audio_file
)
if response.status_code == 200:
result = response.json()
if result.get("RecognitionStatus") == "Success":
return result
else:
print(f"Recognition failed: {result.get('RecognitionStatus')}")
return None
elif response.status_code == 400:
print(f"Bad request: Check language code or audio format")
elif response.status_code == 401:
print(f"Unauthorized: Check API key or token")
elif response.status_code == 403:
print(f"Forbidden: Missing authorization header")
else:
print(f"Error {response.status_code}: {response.text}")
return None
except requests.exceptions.RequestException as e:
print(f"Request failed: {e}")
return None
```
## Async Version
```python
import os
import aiohttp
import asyncio
async def transcribe_async(audio_file_path: str, language: str = "en-US") -> dict:
"""Async version using aiohttp."""
region = os.environ["AZURE_SPEECH_REGION"]
api_key = os.environ["AZURE_SPEECH_KEY"]
url = f"https://{region}.stt.speech.microsoft.com/speech/recognition/conversation/cognitiveservices/v1"
headers = {
"Ocp-Apim-Subscription-Key": api_key,
"Content-Type": "audio/wav; codecs=audio/pcm; samplerate=16000",
"Accept": "application/json"
}
params = {"language": language, "format": "detailed"}
async with aiohttp.ClientSession() as session:
with open(audio_file_path, "rb") as f:
audio_data = f.read()
async with session.post(url, headers=headers, params=params, data=audio_data) as response:
response.raise_for_status()
return await response.json()
# Usage
result = asyncio.run(transcribe_async("audio.wav", "en-US"))
print(result["DisplayText"])
```
## Supported Languages
Common language codes (see [full list](https://learn.microsoft.com/azure/ai-services/speech-service/language-support)):
| Code | Language |
|------|----------|
| `en-US` | English (US) |
| `en-GB` | English (UK) |
| `de-DE` | German |
| `fr-FR` | French |
| `es-ES` | Spanish (Spain) |
| `es-MX` | Spanish (Mexico) |
| `zh-CN` | Chinese (Mandarin) |
| `ja-JP` | Japanese |
| `ko-KR` | Korean |
| `pt-BR` | Portuguese (Brazil) |
## Best Practices
1. **Use WAV PCM 16kHz mono** for best compatibility
2. **Enable chunked transfer** for lower latency
3. **Cache access tokens** for 9 minutes (valid for 10)
4. **Specify the correct language** for accurate recognition
5. **Use detailed format** when you need confidence scores
6. **Handle all RecognitionStatus values** in production code
## When NOT to Use This API
Use the Speech SDK or Batch Transcription API instead when you need:
- Audio longer than 60 seconds
- Real-time streaming transcription
- Partial/interim results
- Speech translation
- Custom speech models
- Batch transcription of many files
## Reference Files
| File | Contents |
|------|----------|
| [references/pronunciation-assessment.md](references/pronunciation-assessment.md) | Pronunciation assessment parameters and scoring |
This skill provides a lightweight Python implementation of Azure Speech-to-Text via the REST API for short audio files (up to 60 seconds). It removes the need for the Speech SDK and focuses on simple HTTP-based transcription, token or key authentication, and optional chunked uploads for lower latency.
The skill sends audio bytes to Azure's conversation recognition endpoint with appropriate Content-Type headers and query parameters (language, format, profanity). It supports synchronous uploads, chunked streaming for lower latency, bearer token or subscription-key authentication, and returns either simple or detailed JSON results with recognition status and confidence scores.
Can I use this for audio longer than 60 seconds?
No. For audio longer than 60 seconds use the Speech SDK or the Batch Transcription API.
Do I get interim/partial results?
No. The REST conversation endpoint returns final results only; it does not provide partial/interim updates.