home / skills / sickn33 / antigravity-awesome-skills / azure-monitor-opentelemetry-ts
This skill helps you auto-instrument Node.js apps with Azure Monitor OpenTelemetry, enabling distributed tracing, metrics, and logs for enhanced observability.
npx playbooks add skill sickn33/antigravity-awesome-skills --skill azure-monitor-opentelemetry-tsReview the files below or copy the command above to add this skill to your agents.
---
name: azure-monitor-opentelemetry-ts
description: Instrument applications with Azure Monitor and OpenTelemetry for JavaScript (@azure/monitor-opentelemetry). Use when adding distributed tracing, metrics, and logs to Node.js applications with Application Insights.
package: "@azure/monitor-opentelemetry"
---
# Azure Monitor OpenTelemetry SDK for TypeScript
Auto-instrument Node.js applications with distributed tracing, metrics, and logs.
## Installation
```bash
# Distro (recommended - auto-instrumentation)
npm install @azure/monitor-opentelemetry
# Low-level exporters (custom OpenTelemetry setup)
npm install @azure/monitor-opentelemetry-exporter
# Custom logs ingestion
npm install @azure/monitor-ingestion
```
## Environment Variables
```bash
APPLICATIONINSIGHTS_CONNECTION_STRING=InstrumentationKey=...;IngestionEndpoint=...
```
## Quick Start (Auto-Instrumentation)
**IMPORTANT:** Call `useAzureMonitor()` BEFORE importing other modules.
```typescript
import { useAzureMonitor } from "@azure/monitor-opentelemetry";
useAzureMonitor({
azureMonitorExporterOptions: {
connectionString: process.env.APPLICATIONINSIGHTS_CONNECTION_STRING
}
});
// Now import your application
import express from "express";
const app = express();
```
## ESM Support (Node.js 18.19+)
```bash
node --import @azure/monitor-opentelemetry/loader ./dist/index.js
```
**package.json:**
```json
{
"scripts": {
"start": "node --import @azure/monitor-opentelemetry/loader ./dist/index.js"
}
}
```
## Full Configuration
```typescript
import { useAzureMonitor, AzureMonitorOpenTelemetryOptions } from "@azure/monitor-opentelemetry";
import { resourceFromAttributes } from "@opentelemetry/resources";
const options: AzureMonitorOpenTelemetryOptions = {
azureMonitorExporterOptions: {
connectionString: process.env.APPLICATIONINSIGHTS_CONNECTION_STRING,
storageDirectory: "/path/to/offline/storage",
disableOfflineStorage: false
},
// Sampling
samplingRatio: 1.0, // 0-1, percentage of traces
// Features
enableLiveMetrics: true,
enableStandardMetrics: true,
enablePerformanceCounters: true,
// Instrumentation libraries
instrumentationOptions: {
azureSdk: { enabled: true },
http: { enabled: true },
mongoDb: { enabled: true },
mySql: { enabled: true },
postgreSql: { enabled: true },
redis: { enabled: true },
bunyan: { enabled: false },
winston: { enabled: false }
},
// Custom resource
resource: resourceFromAttributes({ "service.name": "my-service" })
};
useAzureMonitor(options);
```
## Custom Traces
```typescript
import { trace } from "@opentelemetry/api";
const tracer = trace.getTracer("my-tracer");
const span = tracer.startSpan("doWork");
try {
span.setAttribute("component", "worker");
span.setAttribute("operation.id", "42");
span.addEvent("processing started");
// Your work here
} catch (error) {
span.recordException(error as Error);
span.setStatus({ code: 2, message: (error as Error).message });
} finally {
span.end();
}
```
## Custom Metrics
```typescript
import { metrics } from "@opentelemetry/api";
const meter = metrics.getMeter("my-meter");
// Counter
const counter = meter.createCounter("requests_total");
counter.add(1, { route: "/api/users", method: "GET" });
// Histogram
const histogram = meter.createHistogram("request_duration_ms");
histogram.record(150, { route: "/api/users" });
// Observable Gauge
const gauge = meter.createObservableGauge("active_connections");
gauge.addCallback((result) => {
result.observe(getActiveConnections(), { pool: "main" });
});
```
## Manual Exporter Setup
### Trace Exporter
```typescript
import { AzureMonitorTraceExporter } from "@azure/monitor-opentelemetry-exporter";
import { NodeTracerProvider, BatchSpanProcessor } from "@opentelemetry/sdk-trace-node";
const exporter = new AzureMonitorTraceExporter({
connectionString: process.env.APPLICATIONINSIGHTS_CONNECTION_STRING
});
const provider = new NodeTracerProvider({
spanProcessors: [new BatchSpanProcessor(exporter)]
});
provider.register();
```
### Metric Exporter
```typescript
import { AzureMonitorMetricExporter } from "@azure/monitor-opentelemetry-exporter";
import { PeriodicExportingMetricReader, MeterProvider } from "@opentelemetry/sdk-metrics";
import { metrics } from "@opentelemetry/api";
const exporter = new AzureMonitorMetricExporter({
connectionString: process.env.APPLICATIONINSIGHTS_CONNECTION_STRING
});
const meterProvider = new MeterProvider({
readers: [new PeriodicExportingMetricReader({ exporter })]
});
metrics.setGlobalMeterProvider(meterProvider);
```
### Log Exporter
```typescript
import { AzureMonitorLogExporter } from "@azure/monitor-opentelemetry-exporter";
import { BatchLogRecordProcessor, LoggerProvider } from "@opentelemetry/sdk-logs";
import { logs } from "@opentelemetry/api-logs";
const exporter = new AzureMonitorLogExporter({
connectionString: process.env.APPLICATIONINSIGHTS_CONNECTION_STRING
});
const loggerProvider = new LoggerProvider();
loggerProvider.addLogRecordProcessor(new BatchLogRecordProcessor(exporter));
logs.setGlobalLoggerProvider(loggerProvider);
```
## Custom Logs Ingestion
```typescript
import { DefaultAzureCredential } from "@azure/identity";
import { LogsIngestionClient, isAggregateLogsUploadError } from "@azure/monitor-ingestion";
const endpoint = "https://<dce>.ingest.monitor.azure.com";
const ruleId = "<data-collection-rule-id>";
const streamName = "Custom-MyTable_CL";
const client = new LogsIngestionClient(endpoint, new DefaultAzureCredential());
const logs = [
{
Time: new Date().toISOString(),
Computer: "Server1",
Message: "Application started",
Level: "Information"
}
];
try {
await client.upload(ruleId, streamName, logs);
} catch (error) {
if (isAggregateLogsUploadError(error)) {
for (const uploadError of error.errors) {
console.error("Failed logs:", uploadError.failedLogs);
}
}
}
```
## Custom Span Processor
```typescript
import { SpanProcessor, ReadableSpan } from "@opentelemetry/sdk-trace-base";
import { Span, Context, SpanKind, TraceFlags } from "@opentelemetry/api";
import { useAzureMonitor } from "@azure/monitor-opentelemetry";
class FilteringSpanProcessor implements SpanProcessor {
forceFlush(): Promise<void> { return Promise.resolve(); }
shutdown(): Promise<void> { return Promise.resolve(); }
onStart(span: Span, context: Context): void {}
onEnd(span: ReadableSpan): void {
// Add custom attributes
span.attributes["CustomDimension"] = "value";
// Filter out internal spans
if (span.kind === SpanKind.INTERNAL) {
span.spanContext().traceFlags = TraceFlags.NONE;
}
}
}
useAzureMonitor({
spanProcessors: [new FilteringSpanProcessor()]
});
```
## Sampling
```typescript
import { ApplicationInsightsSampler } from "@azure/monitor-opentelemetry-exporter";
import { NodeTracerProvider } from "@opentelemetry/sdk-trace-node";
// Sample 75% of traces
const sampler = new ApplicationInsightsSampler(0.75);
const provider = new NodeTracerProvider({ sampler });
```
## Shutdown
```typescript
import { useAzureMonitor, shutdownAzureMonitor } from "@azure/monitor-opentelemetry";
useAzureMonitor();
// On application shutdown
process.on("SIGTERM", async () => {
await shutdownAzureMonitor();
process.exit(0);
});
```
## Key Types
```typescript
import {
useAzureMonitor,
shutdownAzureMonitor,
AzureMonitorOpenTelemetryOptions,
InstrumentationOptions
} from "@azure/monitor-opentelemetry";
import {
AzureMonitorTraceExporter,
AzureMonitorMetricExporter,
AzureMonitorLogExporter,
ApplicationInsightsSampler,
AzureMonitorExporterOptions
} from "@azure/monitor-opentelemetry-exporter";
import {
LogsIngestionClient,
isAggregateLogsUploadError
} from "@azure/monitor-ingestion";
```
## Best Practices
1. **Call useAzureMonitor() first** - Before importing other modules
2. **Use ESM loader for ESM projects** - `--import @azure/monitor-opentelemetry/loader`
3. **Enable offline storage** - For reliable telemetry in disconnected scenarios
4. **Set sampling ratio** - For high-traffic applications
5. **Add custom dimensions** - Use span processors for enrichment
6. **Graceful shutdown** - Call `shutdownAzureMonitor()` to flush telemetry
This skill instruments Node.js and TypeScript applications with Azure Monitor using the OpenTelemetry integration for JavaScript (@azure/monitor-opentelemetry). It provides auto-instrumentation, manual exporter setup, metrics, traces, and logs support so you can send telemetry to Application Insights with minimal code changes. The skill includes configuration options for sampling, offline storage, ESM loader support, and custom processors.
It exposes a useAzureMonitor() initializer that configures OpenTelemetry providers and Azure Monitor exporters, and must be called before importing other modules for auto-instrumentation. You can also register manual trace/metric/log exporters, add custom span processors, create custom traces and metrics via the OpenTelemetry API, and upload custom logs using the ingestion client. Shutdown helpers flush buffered telemetry on process exit.
Do I have to use auto-instrumentation?
No. You can use auto-instrumentation by calling useAzureMonitor() early, or set up manual exporters and providers if you need a custom OpenTelemetry configuration.
How do I support ESM projects?
Use Node's import loader: run node --import @azure/monitor-opentelemetry/loader ./dist/index.js or add the same command to your package.json start script.
How do I ensure telemetry is flushed on shutdown?
Register a SIGTERM/SIGINT handler and call shutdownAzureMonitor() before process exit to flush exporters and close resources.