home / skills / sickn33 / antigravity-awesome-skills / azure-data-tables-py
This skill helps you manage Azure Tables with Python, performing table and entity operations efficiently across partitions.
npx playbooks add skill sickn33/antigravity-awesome-skills --skill azure-data-tables-pyReview the files below or copy the command above to add this skill to your agents.
---
name: azure-data-tables-py
description: |
Azure Tables SDK for Python (Storage and Cosmos DB). Use for NoSQL key-value storage, entity CRUD, and batch operations.
Triggers: "table storage", "TableServiceClient", "TableClient", "entities", "PartitionKey", "RowKey".
package: azure-data-tables
---
# Azure Tables SDK for Python
NoSQL key-value store for structured data (Azure Storage Tables or Cosmos DB Table API).
## Installation
```bash
pip install azure-data-tables azure-identity
```
## Environment Variables
```bash
# Azure Storage Tables
AZURE_STORAGE_ACCOUNT_URL=https://<account>.table.core.windows.net
# Cosmos DB Table API
COSMOS_TABLE_ENDPOINT=https://<account>.table.cosmos.azure.com
```
## Authentication
```python
from azure.identity import DefaultAzureCredential
from azure.data.tables import TableServiceClient, TableClient
credential = DefaultAzureCredential()
endpoint = "https://<account>.table.core.windows.net"
# Service client (manage tables)
service_client = TableServiceClient(endpoint=endpoint, credential=credential)
# Table client (work with entities)
table_client = TableClient(endpoint=endpoint, table_name="mytable", credential=credential)
```
## Client Types
| Client | Purpose |
|--------|---------|
| `TableServiceClient` | Create/delete tables, list tables |
| `TableClient` | Entity CRUD, queries |
## Table Operations
```python
# Create table
service_client.create_table("mytable")
# Create if not exists
service_client.create_table_if_not_exists("mytable")
# Delete table
service_client.delete_table("mytable")
# List tables
for table in service_client.list_tables():
print(table.name)
# Get table client
table_client = service_client.get_table_client("mytable")
```
## Entity Operations
**Important**: Every entity requires `PartitionKey` and `RowKey` (together form unique ID).
### Create Entity
```python
entity = {
"PartitionKey": "sales",
"RowKey": "order-001",
"product": "Widget",
"quantity": 5,
"price": 9.99,
"shipped": False
}
# Create (fails if exists)
table_client.create_entity(entity=entity)
# Upsert (create or replace)
table_client.upsert_entity(entity=entity)
```
### Get Entity
```python
# Get by key (fastest)
entity = table_client.get_entity(
partition_key="sales",
row_key="order-001"
)
print(f"Product: {entity['product']}")
```
### Update Entity
```python
# Replace entire entity
entity["quantity"] = 10
table_client.update_entity(entity=entity, mode="replace")
# Merge (update specific fields only)
update = {
"PartitionKey": "sales",
"RowKey": "order-001",
"shipped": True
}
table_client.update_entity(entity=update, mode="merge")
```
### Delete Entity
```python
table_client.delete_entity(
partition_key="sales",
row_key="order-001"
)
```
## Query Entities
### Query Within Partition
```python
# Query by partition (efficient)
entities = table_client.query_entities(
query_filter="PartitionKey eq 'sales'"
)
for entity in entities:
print(entity)
```
### Query with Filters
```python
# Filter by properties
entities = table_client.query_entities(
query_filter="PartitionKey eq 'sales' and quantity gt 3"
)
# With parameters (safer)
entities = table_client.query_entities(
query_filter="PartitionKey eq @pk and price lt @max_price",
parameters={"pk": "sales", "max_price": 50.0}
)
```
### Select Specific Properties
```python
entities = table_client.query_entities(
query_filter="PartitionKey eq 'sales'",
select=["RowKey", "product", "price"]
)
```
### List All Entities
```python
# List all (cross-partition - use sparingly)
for entity in table_client.list_entities():
print(entity)
```
## Batch Operations
```python
from azure.data.tables import TableTransactionError
# Batch operations (same partition only!)
operations = [
("create", {"PartitionKey": "batch", "RowKey": "1", "data": "first"}),
("create", {"PartitionKey": "batch", "RowKey": "2", "data": "second"}),
("upsert", {"PartitionKey": "batch", "RowKey": "3", "data": "third"}),
]
try:
table_client.submit_transaction(operations)
except TableTransactionError as e:
print(f"Transaction failed: {e}")
```
## Async Client
```python
from azure.data.tables.aio import TableServiceClient, TableClient
from azure.identity.aio import DefaultAzureCredential
async def table_operations():
credential = DefaultAzureCredential()
async with TableClient(
endpoint="https://<account>.table.core.windows.net",
table_name="mytable",
credential=credential
) as client:
# Create
await client.create_entity(entity={
"PartitionKey": "async",
"RowKey": "1",
"data": "test"
})
# Query
async for entity in client.query_entities("PartitionKey eq 'async'"):
print(entity)
import asyncio
asyncio.run(table_operations())
```
## Data Types
| Python Type | Table Storage Type |
|-------------|-------------------|
| `str` | String |
| `int` | Int64 |
| `float` | Double |
| `bool` | Boolean |
| `datetime` | DateTime |
| `bytes` | Binary |
| `UUID` | Guid |
## Best Practices
1. **Design partition keys** for query patterns and even distribution
2. **Query within partitions** whenever possible (cross-partition is expensive)
3. **Use batch operations** for multiple entities in same partition
4. **Use `upsert_entity`** for idempotent writes
5. **Use parameterized queries** to prevent injection
6. **Keep entities small** — max 1MB per entity
7. **Use async client** for high-throughput scenarios
This skill provides a concise, practical wrapper for using the Azure Tables SDK for Python to work with Azure Storage Tables and Cosmos DB Table API. It covers authentication, table and entity CRUD, querying, batch transactions, and async clients. Use it to implement NoSQL key-value storage patterns with PartitionKey/RowKey semantics.
The skill shows how to authenticate (DefaultAzureCredential) and obtain TableServiceClient and TableClient instances to manage tables and entities. It demonstrates creating/deleting tables, creating/upserting/getting/updating/deleting entities, parameterized queries, batch transactions (same partition only), and async operations. It also documents supported Python-to-table data types and useful client patterns for idempotent writes and high-throughput scenarios.
Do entities require special keys?
Yes. Every entity must include PartitionKey and RowKey; together they form a unique identifier and drive partitioning and query performance.
Can I batch entities across partitions?
No. Batch transactions must contain operations only within the same PartitionKey. Cross-partition batches are not supported.