home / skills / sickn33 / antigravity-awesome-skills / azure-ai-translation-document-py
This skill translates documents at scale using Azure AI Translation SDK for Python while preserving format across common formats.
npx playbooks add skill sickn33/antigravity-awesome-skills --skill azure-ai-translation-document-pyReview the files below or copy the command above to add this skill to your agents.
---
name: azure-ai-translation-document-py
description: |
Azure AI Document Translation SDK for batch translation of documents with format preservation. Use for translating Word, PDF, Excel, PowerPoint, and other document formats at scale.
Triggers: "document translation", "batch translation", "translate documents", "DocumentTranslationClient".
package: azure-ai-translation-document
---
# Azure AI Document Translation SDK for Python
Client library for Azure AI Translator document translation service for batch document translation with format preservation.
## Installation
```bash
pip install azure-ai-translation-document
```
## Environment Variables
```bash
AZURE_DOCUMENT_TRANSLATION_ENDPOINT=https://<resource>.cognitiveservices.azure.com
AZURE_DOCUMENT_TRANSLATION_KEY=<your-api-key> # If using API key
# Storage for source and target documents
AZURE_SOURCE_CONTAINER_URL=https://<storage>.blob.core.windows.net/<container>?<sas>
AZURE_TARGET_CONTAINER_URL=https://<storage>.blob.core.windows.net/<container>?<sas>
```
## Authentication
### API Key
```python
import os
from azure.ai.translation.document import DocumentTranslationClient
from azure.core.credentials import AzureKeyCredential
endpoint = os.environ["AZURE_DOCUMENT_TRANSLATION_ENDPOINT"]
key = os.environ["AZURE_DOCUMENT_TRANSLATION_KEY"]
client = DocumentTranslationClient(endpoint, AzureKeyCredential(key))
```
### Entra ID (Recommended)
```python
from azure.ai.translation.document import DocumentTranslationClient
from azure.identity import DefaultAzureCredential
client = DocumentTranslationClient(
endpoint=os.environ["AZURE_DOCUMENT_TRANSLATION_ENDPOINT"],
credential=DefaultAzureCredential()
)
```
## Basic Document Translation
```python
from azure.ai.translation.document import DocumentTranslationInput, TranslationTarget
source_url = os.environ["AZURE_SOURCE_CONTAINER_URL"]
target_url = os.environ["AZURE_TARGET_CONTAINER_URL"]
# Start translation job
poller = client.begin_translation(
inputs=[
DocumentTranslationInput(
source_url=source_url,
targets=[
TranslationTarget(
target_url=target_url,
language="es" # Translate to Spanish
)
]
)
]
)
# Wait for completion
result = poller.result()
print(f"Status: {poller.status()}")
print(f"Documents translated: {poller.details.documents_succeeded_count}")
print(f"Documents failed: {poller.details.documents_failed_count}")
```
## Multiple Target Languages
```python
poller = client.begin_translation(
inputs=[
DocumentTranslationInput(
source_url=source_url,
targets=[
TranslationTarget(target_url=target_url_es, language="es"),
TranslationTarget(target_url=target_url_fr, language="fr"),
TranslationTarget(target_url=target_url_de, language="de")
]
)
]
)
```
## Translate Single Document
```python
from azure.ai.translation.document import SingleDocumentTranslationClient
single_client = SingleDocumentTranslationClient(endpoint, AzureKeyCredential(key))
with open("document.docx", "rb") as f:
document_content = f.read()
result = single_client.translate(
body=document_content,
target_language="es",
content_type="application/vnd.openxmlformats-officedocument.wordprocessingml.document"
)
# Save translated document
with open("document_es.docx", "wb") as f:
f.write(result)
```
## Check Translation Status
```python
# Get all translation operations
operations = client.list_translation_statuses()
for op in operations:
print(f"Operation ID: {op.id}")
print(f"Status: {op.status}")
print(f"Created: {op.created_on}")
print(f"Total documents: {op.documents_total_count}")
print(f"Succeeded: {op.documents_succeeded_count}")
print(f"Failed: {op.documents_failed_count}")
```
## List Document Statuses
```python
# Get status of individual documents in a job
operation_id = poller.id
document_statuses = client.list_document_statuses(operation_id)
for doc in document_statuses:
print(f"Document: {doc.source_document_url}")
print(f" Status: {doc.status}")
print(f" Translated to: {doc.translated_to}")
if doc.error:
print(f" Error: {doc.error.message}")
```
## Cancel Translation
```python
# Cancel a running translation
client.cancel_translation(operation_id)
```
## Using Glossary
```python
from azure.ai.translation.document import TranslationGlossary
poller = client.begin_translation(
inputs=[
DocumentTranslationInput(
source_url=source_url,
targets=[
TranslationTarget(
target_url=target_url,
language="es",
glossaries=[
TranslationGlossary(
glossary_url="https://<storage>.blob.core.windows.net/glossary/terms.csv?<sas>",
file_format="csv"
)
]
)
]
)
]
)
```
## Supported Document Formats
```python
# Get supported formats
formats = client.get_supported_document_formats()
for fmt in formats:
print(f"Format: {fmt.format}")
print(f" Extensions: {fmt.file_extensions}")
print(f" Content types: {fmt.content_types}")
```
## Supported Languages
```python
# Get supported languages
languages = client.get_supported_languages()
for lang in languages:
print(f"Language: {lang.name} ({lang.code})")
```
## Async Client
```python
from azure.ai.translation.document.aio import DocumentTranslationClient
from azure.identity.aio import DefaultAzureCredential
async def translate_documents():
async with DocumentTranslationClient(
endpoint=endpoint,
credential=DefaultAzureCredential()
) as client:
poller = await client.begin_translation(inputs=[...])
result = await poller.result()
```
## Supported Formats
| Category | Formats |
|----------|---------|
| Documents | DOCX, PDF, PPTX, XLSX, HTML, TXT, RTF |
| Structured | CSV, TSV, JSON, XML |
| Localization | XLIFF, XLF, MHTML |
## Storage Requirements
- Source and target containers must be Azure Blob Storage
- Use SAS tokens with appropriate permissions:
- Source: Read, List
- Target: Write, List
## Best Practices
1. **Use SAS tokens** with minimal required permissions
2. **Monitor long-running operations** with `poller.status()`
3. **Handle document-level errors** by iterating document statuses
4. **Use glossaries** for domain-specific terminology
5. **Separate target containers** for each language
6. **Use async client** for multiple concurrent jobs
7. **Check supported formats** before submitting documents
This skill provides a ready-to-use Python integration for Azure AI Document Translation to run batch document translations with format preservation. It supports common office and structured formats (DOCX, PDF, PPTX, XLSX, HTML, CSV, XLIFF) and both multi-file container jobs and single-document translations. Use it to translate documents at scale while keeping layout, file type, and optional glossaries intact.
The skill wraps Azure's DocumentTranslationClient and SingleDocumentTranslationClient to submit translation jobs pointing at Azure Blob Storage containers (source and target) using SAS URLs or authenticated credentials. It starts a translation poller to monitor long-running jobs, inspects per-document statuses and errors, supports multiple target languages in one job, and can apply CSV glossaries for domain-specific terminology. It also exposes async clients for concurrent workloads.
What storage is required for batch translation?
Source and target must be Azure Blob Storage; provide SAS URLs with the required permissions.
Can I translate to multiple languages in one job?
Yes. Add multiple TranslationTarget entries pointing to different target containers and languages.
How do I handle failed documents?
List document statuses for the operation, inspect doc.error on failed items, and retry individual files as needed.