home / skills / sickn33 / antigravity-awesome-skills / azure-ai-projects-dotnet

azure-ai-projects-dotnet skill

/skills/azure-ai-projects-dotnet

This skill helps you manage Azure AI Foundry projects and versioned agents in .NET, enabling streamlined creation, deployment, and evaluation across datasets

npx playbooks add skill sickn33/antigravity-awesome-skills --skill azure-ai-projects-dotnet

Review the files below or copy the command above to add this skill to your agents.

Files (1)
SKILL.md
10.7 KB
---
name: azure-ai-projects-dotnet
description: |
  Azure AI Projects SDK for .NET. High-level client for Azure AI Foundry projects including agents, connections, datasets, deployments, evaluations, and indexes. Use for AI Foundry project management, versioned agents, and orchestration. Triggers: "AI Projects", "AIProjectClient", "Foundry project", "versioned agents", "evaluations", "datasets", "connections", "deployments .NET".
package: Azure.AI.Projects
---

# Azure.AI.Projects (.NET)

High-level SDK for Azure AI Foundry project operations including agents, connections, datasets, deployments, evaluations, and indexes.

## Installation

```bash
dotnet add package Azure.AI.Projects
dotnet add package Azure.Identity

# Optional: For versioned agents with OpenAI extensions
dotnet add package Azure.AI.Projects.OpenAI --prerelease

# Optional: For low-level agent operations
dotnet add package Azure.AI.Agents.Persistent --prerelease
```

**Current Versions**: GA v1.1.0, Preview v1.2.0-beta.5

## Environment Variables

```bash
PROJECT_ENDPOINT=https://<resource>.services.ai.azure.com/api/projects/<project>
MODEL_DEPLOYMENT_NAME=gpt-4o-mini
CONNECTION_NAME=<your-connection-name>
AI_SEARCH_CONNECTION_NAME=<ai-search-connection>
```

## Authentication

```csharp
using Azure.Identity;
using Azure.AI.Projects;

var endpoint = Environment.GetEnvironmentVariable("PROJECT_ENDPOINT");
AIProjectClient projectClient = new AIProjectClient(
    new Uri(endpoint), 
    new DefaultAzureCredential());
```

## Client Hierarchy

```
AIProjectClient
├── Agents          → AIProjectAgentsOperations (versioned agents)
├── Connections     → ConnectionsClient
├── Datasets        → DatasetsClient
├── Deployments     → DeploymentsClient
├── Evaluations     → EvaluationsClient
├── Evaluators      → EvaluatorsClient
├── Indexes         → IndexesClient
├── Telemetry       → AIProjectTelemetry
├── OpenAI          → ProjectOpenAIClient (preview)
└── GetPersistentAgentsClient() → PersistentAgentsClient
```

## Core Workflows

### 1. Get Persistent Agents Client

```csharp
// Get low-level agents client from project client
PersistentAgentsClient agentsClient = projectClient.GetPersistentAgentsClient();

// Create agent
PersistentAgent agent = await agentsClient.Administration.CreateAgentAsync(
    model: "gpt-4o-mini",
    name: "Math Tutor",
    instructions: "You are a personal math tutor.");

// Create thread and run
PersistentAgentThread thread = await agentsClient.Threads.CreateThreadAsync();
await agentsClient.Messages.CreateMessageAsync(thread.Id, MessageRole.User, "Solve 3x + 11 = 14");
ThreadRun run = await agentsClient.Runs.CreateRunAsync(thread.Id, agent.Id);

// Poll for completion
do
{
    await Task.Delay(500);
    run = await agentsClient.Runs.GetRunAsync(thread.Id, run.Id);
}
while (run.Status == RunStatus.Queued || run.Status == RunStatus.InProgress);

// Get messages
await foreach (var msg in agentsClient.Messages.GetMessagesAsync(thread.Id))
{
    foreach (var content in msg.ContentItems)
    {
        if (content is MessageTextContent textContent)
            Console.WriteLine(textContent.Text);
    }
}

// Cleanup
await agentsClient.Threads.DeleteThreadAsync(thread.Id);
await agentsClient.Administration.DeleteAgentAsync(agent.Id);
```

### 2. Versioned Agents with Tools (Preview)

```csharp
using Azure.AI.Projects.OpenAI;

// Create agent with web search tool
PromptAgentDefinition agentDefinition = new(model: "gpt-4o-mini")
{
    Instructions = "You are a helpful assistant that can search the web",
    Tools = {
        ResponseTool.CreateWebSearchTool(
            userLocation: WebSearchToolLocation.CreateApproximateLocation(
                country: "US",
                city: "Seattle",
                region: "Washington"
            )
        ),
    }
};

AgentVersion agentVersion = await projectClient.Agents.CreateAgentVersionAsync(
    agentName: "myAgent",
    options: new(agentDefinition));

// Get response client
ProjectResponsesClient responseClient = projectClient.OpenAI.GetProjectResponsesClientForAgent(agentVersion.Name);

// Create response
ResponseResult response = responseClient.CreateResponse("What's the weather in Seattle?");
Console.WriteLine(response.GetOutputText());

// Cleanup
projectClient.Agents.DeleteAgentVersion(agentName: agentVersion.Name, agentVersion: agentVersion.Version);
```

### 3. Connections

```csharp
// List all connections
foreach (AIProjectConnection connection in projectClient.Connections.GetConnections())
{
    Console.WriteLine($"{connection.Name}: {connection.ConnectionType}");
}

// Get specific connection
AIProjectConnection conn = projectClient.Connections.GetConnection(
    connectionName, 
    includeCredentials: true);

// Get default connection
AIProjectConnection defaultConn = projectClient.Connections.GetDefaultConnection(
    includeCredentials: false);
```

### 4. Deployments

```csharp
// List all deployments
foreach (AIProjectDeployment deployment in projectClient.Deployments.GetDeployments())
{
    Console.WriteLine($"{deployment.Name}: {deployment.ModelName}");
}

// Filter by publisher
foreach (var deployment in projectClient.Deployments.GetDeployments(modelPublisher: "Microsoft"))
{
    Console.WriteLine(deployment.Name);
}

// Get specific deployment
ModelDeployment details = (ModelDeployment)projectClient.Deployments.GetDeployment("gpt-4o-mini");
```

### 5. Datasets

```csharp
// Upload single file
FileDataset fileDataset = projectClient.Datasets.UploadFile(
    name: "my-dataset",
    version: "1.0",
    filePath: "data/training.txt",
    connectionName: connectionName);

// Upload folder
FolderDataset folderDataset = projectClient.Datasets.UploadFolder(
    name: "my-dataset",
    version: "2.0",
    folderPath: "data/training",
    connectionName: connectionName,
    filePattern: new Regex(".*\\.txt"));

// Get dataset
AIProjectDataset dataset = projectClient.Datasets.GetDataset("my-dataset", "1.0");

// Delete dataset
projectClient.Datasets.Delete("my-dataset", "1.0");
```

### 6. Indexes

```csharp
// Create Azure AI Search index
AzureAISearchIndex searchIndex = new(aiSearchConnectionName, aiSearchIndexName)
{
    Description = "Sample Index"
};

searchIndex = (AzureAISearchIndex)projectClient.Indexes.CreateOrUpdate(
    name: "my-index",
    version: "1.0",
    index: searchIndex);

// List indexes
foreach (AIProjectIndex index in projectClient.Indexes.GetIndexes())
{
    Console.WriteLine(index.Name);
}

// Delete index
projectClient.Indexes.Delete(name: "my-index", version: "1.0");
```

### 7. Evaluations

```csharp
// Create evaluation configuration
var evaluatorConfig = new EvaluatorConfiguration(id: EvaluatorIDs.Relevance);
evaluatorConfig.InitParams.Add("deployment_name", BinaryData.FromObjectAsJson("gpt-4o"));

// Create evaluation
Evaluation evaluation = new Evaluation(
    data: new InputDataset("<dataset_id>"),
    evaluators: new Dictionary<string, EvaluatorConfiguration> 
    { 
        { "relevance", evaluatorConfig } 
    }
)
{
    DisplayName = "Sample Evaluation"
};

// Run evaluation
Evaluation result = projectClient.Evaluations.Create(evaluation: evaluation);

// Get evaluation
Evaluation getResult = projectClient.Evaluations.Get(result.Name);

// List evaluations
foreach (var eval in projectClient.Evaluations.GetAll())
{
    Console.WriteLine($"{eval.DisplayName}: {eval.Status}");
}
```

### 8. Get Azure OpenAI Chat Client

```csharp
using Azure.AI.OpenAI;
using OpenAI.Chat;

ClientConnection connection = projectClient.GetConnection(typeof(AzureOpenAIClient).FullName!);

if (!connection.TryGetLocatorAsUri(out Uri uri) || uri is null)
    throw new InvalidOperationException("Invalid URI.");

uri = new Uri($"https://{uri.Host}");

AzureOpenAIClient azureOpenAIClient = new AzureOpenAIClient(uri, new DefaultAzureCredential());
ChatClient chatClient = azureOpenAIClient.GetChatClient("gpt-4o-mini");

ChatCompletion result = chatClient.CompleteChat("List all rainbow colors");
Console.WriteLine(result.Content[0].Text);
```

## Available Agent Tools

| Tool | Class | Purpose |
|------|-------|---------|
| Code Interpreter | `CodeInterpreterToolDefinition` | Execute Python code |
| File Search | `FileSearchToolDefinition` | Search uploaded files |
| Function Calling | `FunctionToolDefinition` | Call custom functions |
| Bing Grounding | `BingGroundingToolDefinition` | Web search via Bing |
| Azure AI Search | `AzureAISearchToolDefinition` | Search Azure AI indexes |
| OpenAPI | `OpenApiToolDefinition` | Call external APIs |
| Azure Functions | `AzureFunctionToolDefinition` | Invoke Azure Functions |
| MCP | `MCPToolDefinition` | Model Context Protocol tools |

## Key Types Reference

| Type | Purpose |
|------|---------|
| `AIProjectClient` | Main entry point |
| `PersistentAgentsClient` | Low-level agent operations |
| `PromptAgentDefinition` | Versioned agent definition |
| `AgentVersion` | Versioned agent instance |
| `AIProjectConnection` | Connection to Azure resource |
| `AIProjectDeployment` | Model deployment info |
| `AIProjectDataset` | Dataset metadata |
| `AIProjectIndex` | Search index metadata |
| `Evaluation` | Evaluation configuration and results |

## Best Practices

1. **Use `DefaultAzureCredential`** for production authentication
2. **Use async methods** (`*Async`) for all I/O operations
3. **Poll with appropriate delays** (500ms recommended) when waiting for runs
4. **Clean up resources** — delete threads, agents, and files when done
5. **Use versioned agents** (via `Azure.AI.Projects.OpenAI`) for production scenarios
6. **Store connection IDs** rather than names for tool configurations
7. **Use `includeCredentials: true`** only when credentials are needed
8. **Handle pagination** — use `AsyncPageable<T>` for listing operations

## Error Handling

```csharp
using Azure;

try
{
    var result = await projectClient.Evaluations.CreateAsync(evaluation);
}
catch (RequestFailedException ex)
{
    Console.WriteLine($"Error: {ex.Status} - {ex.ErrorCode}: {ex.Message}");
}
```

## Related SDKs

| SDK | Purpose | Install |
|-----|---------|---------|
| `Azure.AI.Projects` | High-level project client (this SDK) | `dotnet add package Azure.AI.Projects` |
| `Azure.AI.Agents.Persistent` | Low-level agent operations | `dotnet add package Azure.AI.Agents.Persistent` |
| `Azure.AI.Projects.OpenAI` | Versioned agents with OpenAI | `dotnet add package Azure.AI.Projects.OpenAI` |

## Reference Links

| Resource | URL |
|----------|-----|
| NuGet Package | https://www.nuget.org/packages/Azure.AI.Projects |
| API Reference | https://learn.microsoft.com/dotnet/api/azure.ai.projects |
| GitHub Source | https://github.com/Azure/azure-sdk-for-net/tree/main/sdk/ai/Azure.AI.Projects |
| Samples | https://github.com/Azure/azure-sdk-for-net/tree/main/sdk/ai/Azure.AI.Projects/samples |

Overview

This skill packages a high-level .NET client for managing Azure AI Foundry projects, including agents, connections, datasets, deployments, evaluations, and indexes. It exposes both versioned agent workflows and low-level persistent agent operations so you can build, run, and evaluate agentic pipelines in production. Use it to orchestrate models, tools, and data within an Azure AI project context.

How this skill works

Initialize AIProjectClient with a PROJECT_ENDPOINT and DefaultAzureCredential to authenticate. The client surface exposes sub-clients for Agents, Connections, Datasets, Deployments, Evaluations, Indexes, and telemetry, plus a GetPersistentAgentsClient() for low-level agent threads, runs, and messages. Common flows include creating versioned agents, running persistent agent threads, uploading datasets, creating indexes, and running automated evaluations.

When to use it

  • Orchestrating versioned agents and tool-driven pipelines for production assistants.
  • Running persistent agents that maintain threads, messages, and long-lived state.
  • Managing datasets, uploading files or folders for model training or evaluation.
  • Creating and querying Azure AI Search indexes tied to a project.
  • Automating evaluations across deployments and collecting metrics.

Best practices

  • Use DefaultAzureCredential for production authentication and manage secrets with Azure AD.
  • Prefer async APIs for I/O operations and handle pagination with AsyncPageable<T>.
  • Poll runs with a reasonable backoff (example: 500ms) and guard for long-running states.
  • Clean up resources (threads, agents, datasets, indexes) to avoid resource drift and costs.
  • Store connection IDs instead of names when wiring tools to ensure stable references.

Example use cases

  • Create a math-tutor persistent agent, start a thread, run a query, then read produced messages.
  • Publish a versioned agent with web-search and function tools, then get a ProjectResponsesClient to create responses.
  • Upload a training folder via a connection, then create an evaluation using that dataset against a model deployment.
  • Provision an Azure AI Search index from a project and wire it to agent tools for retrieval-augmented responses.
  • List and filter model deployments to select the correct deployment_name for evaluations or tool configs.

FAQ

How do I authenticate in CI or production?

Use DefaultAzureCredential and grant your CI identity the required Azure role; avoid embedding keys in code.

When should I use versioned agents vs persistent agents?

Use versioned agents for managed, reproducible agent versions with tool integrations. Use persistent agents for low-level control over threads, runs, and custom lifecycle management.