home / skills / sickn33 / antigravity-awesome-skills / azure-ai-document-intelligence-ts

azure-ai-document-intelligence-ts skill

/skills/azure-ai-document-intelligence-ts

This skill streamlines extracting text, tables, and structured data from documents using Azure Document Intelligence for invoices, receipts, and forms.

npx playbooks add skill sickn33/antigravity-awesome-skills --skill azure-ai-document-intelligence-ts

Review the files below or copy the command above to add this skill to your agents.

Files (1)
SKILL.md
8.9 KB
---
name: azure-ai-document-intelligence-ts
description: Extract text, tables, and structured data from documents using Azure Document Intelligence (@azure-rest/ai-document-intelligence). Use when processing invoices, receipts, IDs, forms, or building custom document models.
package: "@azure-rest/ai-document-intelligence"
---

# Azure Document Intelligence REST SDK for TypeScript

Extract text, tables, and structured data from documents using prebuilt and custom models.

## Installation

```bash
npm install @azure-rest/ai-document-intelligence @azure/identity
```

## Environment Variables

```bash
DOCUMENT_INTELLIGENCE_ENDPOINT=https://<resource>.cognitiveservices.azure.com
DOCUMENT_INTELLIGENCE_API_KEY=<api-key>
```

## Authentication

**Important**: This is a REST client. `DocumentIntelligence` is a **function**, not a class.

### DefaultAzureCredential

```typescript
import DocumentIntelligence from "@azure-rest/ai-document-intelligence";
import { DefaultAzureCredential } from "@azure/identity";

const client = DocumentIntelligence(
  process.env.DOCUMENT_INTELLIGENCE_ENDPOINT!,
  new DefaultAzureCredential()
);
```

### API Key

```typescript
import DocumentIntelligence from "@azure-rest/ai-document-intelligence";

const client = DocumentIntelligence(
  process.env.DOCUMENT_INTELLIGENCE_ENDPOINT!,
  { key: process.env.DOCUMENT_INTELLIGENCE_API_KEY! }
);
```

## Analyze Document (URL)

```typescript
import DocumentIntelligence, {
  isUnexpected,
  getLongRunningPoller,
  AnalyzeOperationOutput
} from "@azure-rest/ai-document-intelligence";

const initialResponse = await client
  .path("/documentModels/{modelId}:analyze", "prebuilt-layout")
  .post({
    contentType: "application/json",
    body: {
      urlSource: "https://example.com/document.pdf"
    },
    queryParameters: { locale: "en-US" }
  });

if (isUnexpected(initialResponse)) {
  throw initialResponse.body.error;
}

const poller = getLongRunningPoller(client, initialResponse);
const result = (await poller.pollUntilDone()).body as AnalyzeOperationOutput;

console.log("Pages:", result.analyzeResult?.pages?.length);
console.log("Tables:", result.analyzeResult?.tables?.length);
```

## Analyze Document (Local File)

```typescript
import { readFile } from "node:fs/promises";

const fileBuffer = await readFile("./document.pdf");
const base64Source = fileBuffer.toString("base64");

const initialResponse = await client
  .path("/documentModels/{modelId}:analyze", "prebuilt-invoice")
  .post({
    contentType: "application/json",
    body: { base64Source }
  });

if (isUnexpected(initialResponse)) {
  throw initialResponse.body.error;
}

const poller = getLongRunningPoller(client, initialResponse);
const result = (await poller.pollUntilDone()).body as AnalyzeOperationOutput;
```

## Prebuilt Models

| Model ID | Description |
|----------|-------------|
| `prebuilt-read` | OCR - text and language extraction |
| `prebuilt-layout` | Text, tables, selection marks, structure |
| `prebuilt-invoice` | Invoice fields |
| `prebuilt-receipt` | Receipt fields |
| `prebuilt-idDocument` | ID document fields |
| `prebuilt-tax.us.w2` | W-2 tax form fields |
| `prebuilt-healthInsuranceCard.us` | Health insurance card fields |
| `prebuilt-contract` | Contract fields |
| `prebuilt-bankStatement.us` | Bank statement fields |

## Extract Invoice Fields

```typescript
const initialResponse = await client
  .path("/documentModels/{modelId}:analyze", "prebuilt-invoice")
  .post({
    contentType: "application/json",
    body: { urlSource: invoiceUrl }
  });

if (isUnexpected(initialResponse)) {
  throw initialResponse.body.error;
}

const poller = getLongRunningPoller(client, initialResponse);
const result = (await poller.pollUntilDone()).body as AnalyzeOperationOutput;

const invoice = result.analyzeResult?.documents?.[0];
if (invoice) {
  console.log("Vendor:", invoice.fields?.VendorName?.content);
  console.log("Total:", invoice.fields?.InvoiceTotal?.content);
  console.log("Due Date:", invoice.fields?.DueDate?.content);
}
```

## Extract Receipt Fields

```typescript
const initialResponse = await client
  .path("/documentModels/{modelId}:analyze", "prebuilt-receipt")
  .post({
    contentType: "application/json",
    body: { urlSource: receiptUrl }
  });

const poller = getLongRunningPoller(client, initialResponse);
const result = (await poller.pollUntilDone()).body as AnalyzeOperationOutput;

const receipt = result.analyzeResult?.documents?.[0];
if (receipt) {
  console.log("Merchant:", receipt.fields?.MerchantName?.content);
  console.log("Total:", receipt.fields?.Total?.content);
  
  for (const item of receipt.fields?.Items?.values || []) {
    console.log("Item:", item.properties?.Description?.content);
    console.log("Price:", item.properties?.TotalPrice?.content);
  }
}
```

## List Document Models

```typescript
import DocumentIntelligence, { isUnexpected, paginate } from "@azure-rest/ai-document-intelligence";

const response = await client.path("/documentModels").get();

if (isUnexpected(response)) {
  throw response.body.error;
}

for await (const model of paginate(client, response)) {
  console.log(model.modelId);
}
```

## Build Custom Model

```typescript
const initialResponse = await client.path("/documentModels:build").post({
  body: {
    modelId: "my-custom-model",
    description: "Custom model for purchase orders",
    buildMode: "template",  // or "neural"
    azureBlobSource: {
      containerUrl: process.env.TRAINING_CONTAINER_SAS_URL!,
      prefix: "training-data/"
    }
  }
});

if (isUnexpected(initialResponse)) {
  throw initialResponse.body.error;
}

const poller = getLongRunningPoller(client, initialResponse);
const result = await poller.pollUntilDone();
console.log("Model built:", result.body);
```

## Build Document Classifier

```typescript
import { DocumentClassifierBuildOperationDetailsOutput } from "@azure-rest/ai-document-intelligence";

const containerSasUrl = process.env.TRAINING_CONTAINER_SAS_URL!;

const initialResponse = await client.path("/documentClassifiers:build").post({
  body: {
    classifierId: "my-classifier",
    description: "Invoice vs Receipt classifier",
    docTypes: {
      invoices: {
        azureBlobSource: { containerUrl: containerSasUrl, prefix: "invoices/" }
      },
      receipts: {
        azureBlobSource: { containerUrl: containerSasUrl, prefix: "receipts/" }
      }
    }
  }
});

if (isUnexpected(initialResponse)) {
  throw initialResponse.body.error;
}

const poller = getLongRunningPoller(client, initialResponse);
const result = (await poller.pollUntilDone()).body as DocumentClassifierBuildOperationDetailsOutput;
console.log("Classifier:", result.result?.classifierId);
```

## Classify Document

```typescript
const initialResponse = await client
  .path("/documentClassifiers/{classifierId}:analyze", "my-classifier")
  .post({
    contentType: "application/json",
    body: { urlSource: documentUrl },
    queryParameters: { split: "auto" }
  });

if (isUnexpected(initialResponse)) {
  throw initialResponse.body.error;
}

const poller = getLongRunningPoller(client, initialResponse);
const result = await poller.pollUntilDone();
console.log("Classification:", result.body.analyzeResult?.documents);
```

## Get Service Info

```typescript
const response = await client.path("/info").get();

if (isUnexpected(response)) {
  throw response.body.error;
}

console.log("Custom model limit:", response.body.customDocumentModels.limit);
console.log("Custom model count:", response.body.customDocumentModels.count);
```

## Polling Pattern

```typescript
import DocumentIntelligence, {
  isUnexpected,
  getLongRunningPoller,
  AnalyzeOperationOutput
} from "@azure-rest/ai-document-intelligence";

// 1. Start operation
const initialResponse = await client
  .path("/documentModels/{modelId}:analyze", "prebuilt-layout")
  .post({ contentType: "application/json", body: { urlSource } });

// 2. Check for errors
if (isUnexpected(initialResponse)) {
  throw initialResponse.body.error;
}

// 3. Create poller
const poller = getLongRunningPoller(client, initialResponse);

// 4. Optional: Monitor progress
poller.onProgress((state) => {
  console.log("Status:", state.status);
});

// 5. Wait for completion
const result = (await poller.pollUntilDone()).body as AnalyzeOperationOutput;
```

## Key Types

```typescript
import DocumentIntelligence, {
  isUnexpected,
  getLongRunningPoller,
  paginate,
  parseResultIdFromResponse,
  AnalyzeOperationOutput,
  DocumentClassifierBuildOperationDetailsOutput
} from "@azure-rest/ai-document-intelligence";
```

## Best Practices

1. **Use getLongRunningPoller()** - Document analysis is async, always poll for results
2. **Check isUnexpected()** - Type guard for proper error handling
3. **Choose the right model** - Use prebuilt models when possible, custom for specialized docs
4. **Handle confidence scores** - Fields have confidence values, set thresholds for your use case
5. **Use pagination** - Use `paginate()` helper for listing models
6. **Prefer neural mode** - For custom models, neural handles more variation than template

Overview

This skill integrates Azure Document Intelligence REST SDK for TypeScript to extract text, tables, and structured fields from documents. It supports prebuilt models (invoices, receipts, IDs, layouts) and building custom models or classifiers for specialized document formats. Use it to automate data extraction, indexing, and downstream workflows from PDFs, images, and scanned forms.

How this skill works

The skill creates a DocumentIntelligence REST client (API key or DefaultAzureCredential) and calls the /documentModels or /documentClassifiers endpoints to analyze documents. Analysis requests return an initial response that you must poll with getLongRunningPoller() until completion. Results include pages, tables, detected fields, confidence scores, and document-level classification. It also supports uploading local files as base64 and training custom models using Azure Blob training containers.

When to use it

  • Automating invoice and receipt data extraction for AP workflows
  • Parsing IDs, passports, or structured forms for onboarding
  • Extracting tables and layout from scanned reports or statements
  • Building custom document models when prebuilt models miss fields
  • Classifying mixed document batches (invoice vs receipt) before processing

Best practices

  • Always use getLongRunningPoller() to wait for async analysis to finish
  • Check isUnexpected() on initial responses and surface errors early
  • Select the closest prebuilt model first; build custom models only when needed
  • Use confidence scores to filter or flag low-quality field extractions
  • Store training data in an Azure Blob container and use SAS URLs for builds
  • Paginate model listings with paginate() to handle large model sets

Example use cases

  • Extract vendor, invoice total, and due date from incoming PDF invoices and push to ERP
  • Scan retail receipts to capture merchant, line items, and totals for expense tracking
  • Ingest bank statements and extract tabular transactions for reconciliation
  • Train a custom model to extract purchase order fields not covered by prebuilt models
  • Classify a mixed email attachment batch into document types and route accordingly

FAQ

How do I authenticate the client?

You can use DefaultAzureCredential for managed identities or an API key by passing { key: process.env.DOCUMENT_INTELLIGENCE_API_KEY } when creating the client.

Can I analyze a local file?

Yes. Read the file into a buffer, convert to base64 and submit it as base64Source in the analyze request body.

When should I build a custom model?

Build a custom model when prebuilt models do not expose required fields or when document layouts vary significantly and you need higher accuracy.