home / skills / sickn33 / antigravity-awesome-skills / azure-ai-document-intelligence-ts
This skill streamlines extracting text, tables, and structured data from documents using Azure Document Intelligence for invoices, receipts, and forms.
npx playbooks add skill sickn33/antigravity-awesome-skills --skill azure-ai-document-intelligence-tsReview the files below or copy the command above to add this skill to your agents.
---
name: azure-ai-document-intelligence-ts
description: Extract text, tables, and structured data from documents using Azure Document Intelligence (@azure-rest/ai-document-intelligence). Use when processing invoices, receipts, IDs, forms, or building custom document models.
package: "@azure-rest/ai-document-intelligence"
---
# Azure Document Intelligence REST SDK for TypeScript
Extract text, tables, and structured data from documents using prebuilt and custom models.
## Installation
```bash
npm install @azure-rest/ai-document-intelligence @azure/identity
```
## Environment Variables
```bash
DOCUMENT_INTELLIGENCE_ENDPOINT=https://<resource>.cognitiveservices.azure.com
DOCUMENT_INTELLIGENCE_API_KEY=<api-key>
```
## Authentication
**Important**: This is a REST client. `DocumentIntelligence` is a **function**, not a class.
### DefaultAzureCredential
```typescript
import DocumentIntelligence from "@azure-rest/ai-document-intelligence";
import { DefaultAzureCredential } from "@azure/identity";
const client = DocumentIntelligence(
process.env.DOCUMENT_INTELLIGENCE_ENDPOINT!,
new DefaultAzureCredential()
);
```
### API Key
```typescript
import DocumentIntelligence from "@azure-rest/ai-document-intelligence";
const client = DocumentIntelligence(
process.env.DOCUMENT_INTELLIGENCE_ENDPOINT!,
{ key: process.env.DOCUMENT_INTELLIGENCE_API_KEY! }
);
```
## Analyze Document (URL)
```typescript
import DocumentIntelligence, {
isUnexpected,
getLongRunningPoller,
AnalyzeOperationOutput
} from "@azure-rest/ai-document-intelligence";
const initialResponse = await client
.path("/documentModels/{modelId}:analyze", "prebuilt-layout")
.post({
contentType: "application/json",
body: {
urlSource: "https://example.com/document.pdf"
},
queryParameters: { locale: "en-US" }
});
if (isUnexpected(initialResponse)) {
throw initialResponse.body.error;
}
const poller = getLongRunningPoller(client, initialResponse);
const result = (await poller.pollUntilDone()).body as AnalyzeOperationOutput;
console.log("Pages:", result.analyzeResult?.pages?.length);
console.log("Tables:", result.analyzeResult?.tables?.length);
```
## Analyze Document (Local File)
```typescript
import { readFile } from "node:fs/promises";
const fileBuffer = await readFile("./document.pdf");
const base64Source = fileBuffer.toString("base64");
const initialResponse = await client
.path("/documentModels/{modelId}:analyze", "prebuilt-invoice")
.post({
contentType: "application/json",
body: { base64Source }
});
if (isUnexpected(initialResponse)) {
throw initialResponse.body.error;
}
const poller = getLongRunningPoller(client, initialResponse);
const result = (await poller.pollUntilDone()).body as AnalyzeOperationOutput;
```
## Prebuilt Models
| Model ID | Description |
|----------|-------------|
| `prebuilt-read` | OCR - text and language extraction |
| `prebuilt-layout` | Text, tables, selection marks, structure |
| `prebuilt-invoice` | Invoice fields |
| `prebuilt-receipt` | Receipt fields |
| `prebuilt-idDocument` | ID document fields |
| `prebuilt-tax.us.w2` | W-2 tax form fields |
| `prebuilt-healthInsuranceCard.us` | Health insurance card fields |
| `prebuilt-contract` | Contract fields |
| `prebuilt-bankStatement.us` | Bank statement fields |
## Extract Invoice Fields
```typescript
const initialResponse = await client
.path("/documentModels/{modelId}:analyze", "prebuilt-invoice")
.post({
contentType: "application/json",
body: { urlSource: invoiceUrl }
});
if (isUnexpected(initialResponse)) {
throw initialResponse.body.error;
}
const poller = getLongRunningPoller(client, initialResponse);
const result = (await poller.pollUntilDone()).body as AnalyzeOperationOutput;
const invoice = result.analyzeResult?.documents?.[0];
if (invoice) {
console.log("Vendor:", invoice.fields?.VendorName?.content);
console.log("Total:", invoice.fields?.InvoiceTotal?.content);
console.log("Due Date:", invoice.fields?.DueDate?.content);
}
```
## Extract Receipt Fields
```typescript
const initialResponse = await client
.path("/documentModels/{modelId}:analyze", "prebuilt-receipt")
.post({
contentType: "application/json",
body: { urlSource: receiptUrl }
});
const poller = getLongRunningPoller(client, initialResponse);
const result = (await poller.pollUntilDone()).body as AnalyzeOperationOutput;
const receipt = result.analyzeResult?.documents?.[0];
if (receipt) {
console.log("Merchant:", receipt.fields?.MerchantName?.content);
console.log("Total:", receipt.fields?.Total?.content);
for (const item of receipt.fields?.Items?.values || []) {
console.log("Item:", item.properties?.Description?.content);
console.log("Price:", item.properties?.TotalPrice?.content);
}
}
```
## List Document Models
```typescript
import DocumentIntelligence, { isUnexpected, paginate } from "@azure-rest/ai-document-intelligence";
const response = await client.path("/documentModels").get();
if (isUnexpected(response)) {
throw response.body.error;
}
for await (const model of paginate(client, response)) {
console.log(model.modelId);
}
```
## Build Custom Model
```typescript
const initialResponse = await client.path("/documentModels:build").post({
body: {
modelId: "my-custom-model",
description: "Custom model for purchase orders",
buildMode: "template", // or "neural"
azureBlobSource: {
containerUrl: process.env.TRAINING_CONTAINER_SAS_URL!,
prefix: "training-data/"
}
}
});
if (isUnexpected(initialResponse)) {
throw initialResponse.body.error;
}
const poller = getLongRunningPoller(client, initialResponse);
const result = await poller.pollUntilDone();
console.log("Model built:", result.body);
```
## Build Document Classifier
```typescript
import { DocumentClassifierBuildOperationDetailsOutput } from "@azure-rest/ai-document-intelligence";
const containerSasUrl = process.env.TRAINING_CONTAINER_SAS_URL!;
const initialResponse = await client.path("/documentClassifiers:build").post({
body: {
classifierId: "my-classifier",
description: "Invoice vs Receipt classifier",
docTypes: {
invoices: {
azureBlobSource: { containerUrl: containerSasUrl, prefix: "invoices/" }
},
receipts: {
azureBlobSource: { containerUrl: containerSasUrl, prefix: "receipts/" }
}
}
}
});
if (isUnexpected(initialResponse)) {
throw initialResponse.body.error;
}
const poller = getLongRunningPoller(client, initialResponse);
const result = (await poller.pollUntilDone()).body as DocumentClassifierBuildOperationDetailsOutput;
console.log("Classifier:", result.result?.classifierId);
```
## Classify Document
```typescript
const initialResponse = await client
.path("/documentClassifiers/{classifierId}:analyze", "my-classifier")
.post({
contentType: "application/json",
body: { urlSource: documentUrl },
queryParameters: { split: "auto" }
});
if (isUnexpected(initialResponse)) {
throw initialResponse.body.error;
}
const poller = getLongRunningPoller(client, initialResponse);
const result = await poller.pollUntilDone();
console.log("Classification:", result.body.analyzeResult?.documents);
```
## Get Service Info
```typescript
const response = await client.path("/info").get();
if (isUnexpected(response)) {
throw response.body.error;
}
console.log("Custom model limit:", response.body.customDocumentModels.limit);
console.log("Custom model count:", response.body.customDocumentModels.count);
```
## Polling Pattern
```typescript
import DocumentIntelligence, {
isUnexpected,
getLongRunningPoller,
AnalyzeOperationOutput
} from "@azure-rest/ai-document-intelligence";
// 1. Start operation
const initialResponse = await client
.path("/documentModels/{modelId}:analyze", "prebuilt-layout")
.post({ contentType: "application/json", body: { urlSource } });
// 2. Check for errors
if (isUnexpected(initialResponse)) {
throw initialResponse.body.error;
}
// 3. Create poller
const poller = getLongRunningPoller(client, initialResponse);
// 4. Optional: Monitor progress
poller.onProgress((state) => {
console.log("Status:", state.status);
});
// 5. Wait for completion
const result = (await poller.pollUntilDone()).body as AnalyzeOperationOutput;
```
## Key Types
```typescript
import DocumentIntelligence, {
isUnexpected,
getLongRunningPoller,
paginate,
parseResultIdFromResponse,
AnalyzeOperationOutput,
DocumentClassifierBuildOperationDetailsOutput
} from "@azure-rest/ai-document-intelligence";
```
## Best Practices
1. **Use getLongRunningPoller()** - Document analysis is async, always poll for results
2. **Check isUnexpected()** - Type guard for proper error handling
3. **Choose the right model** - Use prebuilt models when possible, custom for specialized docs
4. **Handle confidence scores** - Fields have confidence values, set thresholds for your use case
5. **Use pagination** - Use `paginate()` helper for listing models
6. **Prefer neural mode** - For custom models, neural handles more variation than template
This skill integrates Azure Document Intelligence REST SDK for TypeScript to extract text, tables, and structured fields from documents. It supports prebuilt models (invoices, receipts, IDs, layouts) and building custom models or classifiers for specialized document formats. Use it to automate data extraction, indexing, and downstream workflows from PDFs, images, and scanned forms.
The skill creates a DocumentIntelligence REST client (API key or DefaultAzureCredential) and calls the /documentModels or /documentClassifiers endpoints to analyze documents. Analysis requests return an initial response that you must poll with getLongRunningPoller() until completion. Results include pages, tables, detected fields, confidence scores, and document-level classification. It also supports uploading local files as base64 and training custom models using Azure Blob training containers.
How do I authenticate the client?
You can use DefaultAzureCredential for managed identities or an API key by passing { key: process.env.DOCUMENT_INTELLIGENCE_API_KEY } when creating the client.
Can I analyze a local file?
Yes. Read the file into a buffer, convert to base64 and submit it as base64Source in the analyze request body.
When should I build a custom model?
Build a custom model when prebuilt models do not expose required fields or when document layouts vary significantly and you need higher accuracy.