home / skills / sickn33 / antigravity-awesome-skills / azure-ai-agents-persistent-dotnet

azure-ai-agents-persistent-dotnet skill

/skills/azure-ai-agents-persistent-dotnet

This skill helps you orchestrate persistent AI agents in .NET with threads, messages, runs, and tools for end-to-end workflows.

npx playbooks add skill sickn33/antigravity-awesome-skills --skill azure-ai-agents-persistent-dotnet

Review the files below or copy the command above to add this skill to your agents.

Files (1)
SKILL.md
10.8 KB
---
name: azure-ai-agents-persistent-dotnet
description: |
  Azure AI Agents Persistent SDK for .NET. Low-level SDK for creating and managing AI agents with threads, messages, runs, and tools. Use for agent CRUD, conversation threads, streaming responses, function calling, file search, and code interpreter. Triggers: "PersistentAgentsClient", "persistent agents", "agent threads", "agent runs", "streaming agents", "function calling agents .NET".
package: Azure.AI.Agents.Persistent
---

# Azure.AI.Agents.Persistent (.NET)

Low-level SDK for creating and managing persistent AI agents with threads, messages, runs, and tools.

## Installation

```bash
dotnet add package Azure.AI.Agents.Persistent --prerelease
dotnet add package Azure.Identity
```

**Current Versions**: Stable v1.1.0, Preview v1.2.0-beta.8

## Environment Variables

```bash
PROJECT_ENDPOINT=https://<resource>.services.ai.azure.com/api/projects/<project>
MODEL_DEPLOYMENT_NAME=gpt-4o-mini
AZURE_BING_CONNECTION_ID=<bing-connection-resource-id>
AZURE_AI_SEARCH_CONNECTION_ID=<search-connection-resource-id>
```

## Authentication

```csharp
using Azure.AI.Agents.Persistent;
using Azure.Identity;

var projectEndpoint = Environment.GetEnvironmentVariable("PROJECT_ENDPOINT");
PersistentAgentsClient client = new(projectEndpoint, new DefaultAzureCredential());
```

## Client Hierarchy

```
PersistentAgentsClient
├── Administration  → Agent CRUD operations
├── Threads         → Thread management
├── Messages        → Message operations
├── Runs            → Run execution and streaming
├── Files           → File upload/download
└── VectorStores    → Vector store management
```

## Core Workflow

### 1. Create Agent

```csharp
var modelDeploymentName = Environment.GetEnvironmentVariable("MODEL_DEPLOYMENT_NAME");

PersistentAgent agent = await client.Administration.CreateAgentAsync(
    model: modelDeploymentName,
    name: "Math Tutor",
    instructions: "You are a personal math tutor. Write and run code to answer math questions.",
    tools: [new CodeInterpreterToolDefinition()]
);
```

### 2. Create Thread and Message

```csharp
// Create thread
PersistentAgentThread thread = await client.Threads.CreateThreadAsync();

// Create message
await client.Messages.CreateMessageAsync(
    thread.Id,
    MessageRole.User,
    "I need to solve the equation `3x + 11 = 14`. Can you help me?"
);
```

### 3. Run Agent (Polling)

```csharp
// Create run
ThreadRun run = await client.Runs.CreateRunAsync(
    thread.Id,
    agent.Id,
    additionalInstructions: "Please address the user as Jane Doe."
);

// Poll for completion
do
{
    await Task.Delay(TimeSpan.FromMilliseconds(500));
    run = await client.Runs.GetRunAsync(thread.Id, run.Id);
}
while (run.Status == RunStatus.Queued || run.Status == RunStatus.InProgress);

// Retrieve messages
await foreach (PersistentThreadMessage message in client.Messages.GetMessagesAsync(
    threadId: thread.Id, 
    order: ListSortOrder.Ascending))
{
    Console.Write($"{message.Role}: ");
    foreach (MessageContent content in message.ContentItems)
    {
        if (content is MessageTextContent textContent)
            Console.WriteLine(textContent.Text);
    }
}
```

### 4. Streaming Response

```csharp
AsyncCollectionResult<StreamingUpdate> stream = client.Runs.CreateRunStreamingAsync(
    thread.Id, 
    agent.Id
);

await foreach (StreamingUpdate update in stream)
{
    if (update.UpdateKind == StreamingUpdateReason.RunCreated)
    {
        Console.WriteLine("--- Run started! ---");
    }
    else if (update is MessageContentUpdate contentUpdate)
    {
        Console.Write(contentUpdate.Text);
    }
    else if (update.UpdateKind == StreamingUpdateReason.RunCompleted)
    {
        Console.WriteLine("\n--- Run completed! ---");
    }
}
```

### 5. Function Calling

```csharp
// Define function tool
FunctionToolDefinition weatherTool = new(
    name: "getCurrentWeather",
    description: "Gets the current weather at a location.",
    parameters: BinaryData.FromObjectAsJson(new
    {
        Type = "object",
        Properties = new
        {
            Location = new { Type = "string", Description = "City and state, e.g. San Francisco, CA" },
            Unit = new { Type = "string", Enum = new[] { "c", "f" } }
        },
        Required = new[] { "location" }
    }, new JsonSerializerOptions { PropertyNamingPolicy = JsonNamingPolicy.CamelCase })
);

// Create agent with function
PersistentAgent agent = await client.Administration.CreateAgentAsync(
    model: modelDeploymentName,
    name: "Weather Bot",
    instructions: "You are a weather bot.",
    tools: [weatherTool]
);

// Handle function calls during polling
do
{
    await Task.Delay(500);
    run = await client.Runs.GetRunAsync(thread.Id, run.Id);

    if (run.Status == RunStatus.RequiresAction 
        && run.RequiredAction is SubmitToolOutputsAction submitAction)
    {
        List<ToolOutput> outputs = [];
        foreach (RequiredToolCall toolCall in submitAction.ToolCalls)
        {
            if (toolCall is RequiredFunctionToolCall funcCall)
            {
                // Execute function and get result
                string result = ExecuteFunction(funcCall.Name, funcCall.Arguments);
                outputs.Add(new ToolOutput(toolCall, result));
            }
        }
        run = await client.Runs.SubmitToolOutputsToRunAsync(run, outputs, toolApprovals: null);
    }
}
while (run.Status == RunStatus.Queued || run.Status == RunStatus.InProgress);
```

### 6. File Search with Vector Store

```csharp
// Upload file
PersistentAgentFileInfo file = await client.Files.UploadFileAsync(
    filePath: "document.txt",
    purpose: PersistentAgentFilePurpose.Agents
);

// Create vector store
PersistentAgentsVectorStore vectorStore = await client.VectorStores.CreateVectorStoreAsync(
    fileIds: [file.Id],
    name: "my_vector_store"
);

// Create file search resource
FileSearchToolResource fileSearchResource = new();
fileSearchResource.VectorStoreIds.Add(vectorStore.Id);

// Create agent with file search
PersistentAgent agent = await client.Administration.CreateAgentAsync(
    model: modelDeploymentName,
    name: "Document Assistant",
    instructions: "You help users find information in documents.",
    tools: [new FileSearchToolDefinition()],
    toolResources: new ToolResources { FileSearch = fileSearchResource }
);
```

### 7. Bing Grounding

```csharp
var bingConnectionId = Environment.GetEnvironmentVariable("AZURE_BING_CONNECTION_ID");

BingGroundingToolDefinition bingTool = new(
    new BingGroundingSearchToolParameters(
        [new BingGroundingSearchConfiguration(bingConnectionId)]
    )
);

PersistentAgent agent = await client.Administration.CreateAgentAsync(
    model: modelDeploymentName,
    name: "Search Agent",
    instructions: "Use Bing to answer questions about current events.",
    tools: [bingTool]
);
```

### 8. Azure AI Search

```csharp
AzureAISearchToolResource searchResource = new(
    connectionId: searchConnectionId,
    indexName: "my_index",
    topK: 5,
    filter: "category eq 'documentation'",
    queryType: AzureAISearchQueryType.Simple
);

PersistentAgent agent = await client.Administration.CreateAgentAsync(
    model: modelDeploymentName,
    name: "Search Agent",
    instructions: "Search the documentation index to answer questions.",
    tools: [new AzureAISearchToolDefinition()],
    toolResources: new ToolResources { AzureAISearch = searchResource }
);
```

### 9. Cleanup

```csharp
await client.Threads.DeleteThreadAsync(thread.Id);
await client.Administration.DeleteAgentAsync(agent.Id);
await client.VectorStores.DeleteVectorStoreAsync(vectorStore.Id);
await client.Files.DeleteFileAsync(file.Id);
```

## Available Tools

| Tool | Class | Purpose |
|------|-------|---------|
| Code Interpreter | `CodeInterpreterToolDefinition` | Execute Python code, generate visualizations |
| File Search | `FileSearchToolDefinition` | Search uploaded files via vector stores |
| Function Calling | `FunctionToolDefinition` | Call custom functions |
| Bing Grounding | `BingGroundingToolDefinition` | Web search via Bing |
| Azure AI Search | `AzureAISearchToolDefinition` | Search Azure AI Search indexes |
| OpenAPI | `OpenApiToolDefinition` | Call external APIs via OpenAPI spec |
| Azure Functions | `AzureFunctionToolDefinition` | Invoke Azure Functions |
| MCP | `MCPToolDefinition` | Model Context Protocol tools |
| SharePoint | `SharepointToolDefinition` | Access SharePoint content |
| Microsoft Fabric | `MicrosoftFabricToolDefinition` | Access Fabric data |

## Streaming Update Types

| Update Type | Description |
|-------------|-------------|
| `StreamingUpdateReason.RunCreated` | Run started |
| `StreamingUpdateReason.RunInProgress` | Run processing |
| `StreamingUpdateReason.RunCompleted` | Run finished |
| `StreamingUpdateReason.RunFailed` | Run errored |
| `MessageContentUpdate` | Text content chunk |
| `RunStepUpdate` | Step status change |

## Key Types Reference

| Type | Purpose |
|------|---------|
| `PersistentAgentsClient` | Main entry point |
| `PersistentAgent` | Agent with model, instructions, tools |
| `PersistentAgentThread` | Conversation thread |
| `PersistentThreadMessage` | Message in thread |
| `ThreadRun` | Execution of agent against thread |
| `RunStatus` | Queued, InProgress, RequiresAction, Completed, Failed |
| `ToolResources` | Combined tool resources |
| `ToolOutput` | Function call response |

## Best Practices

1. **Always dispose clients** — Use `using` statements or explicit disposal
2. **Poll with appropriate delays** — 500ms recommended between status checks
3. **Clean up resources** — Delete threads and agents when done
4. **Handle all run statuses** — Check for `RequiresAction`, `Failed`, `Cancelled`
5. **Use streaming for real-time UX** — Better user experience than polling
6. **Store IDs not objects** — Reference agents/threads by ID
7. **Use async methods** — All operations should be async

## Error Handling

```csharp
using Azure;

try
{
    var agent = await client.Administration.CreateAgentAsync(...);
}
catch (RequestFailedException ex) when (ex.Status == 404)
{
    Console.WriteLine("Resource not found");
}
catch (RequestFailedException ex)
{
    Console.WriteLine($"Error: {ex.Status} - {ex.ErrorCode}: {ex.Message}");
}
```

## Related SDKs

| SDK | Purpose | Install |
|-----|---------|---------|
| `Azure.AI.Agents.Persistent` | Low-level agents (this SDK) | `dotnet add package Azure.AI.Agents.Persistent` |
| `Azure.AI.Projects` | High-level project client | `dotnet add package Azure.AI.Projects` |

## Reference Links

| Resource | URL |
|----------|-----|
| NuGet Package | https://www.nuget.org/packages/Azure.AI.Agents.Persistent |
| API Reference | https://learn.microsoft.com/dotnet/api/azure.ai.agents.persistent |
| GitHub Source | https://github.com/Azure/azure-sdk-for-net/tree/main/sdk/ai/Azure.AI.Agents.Persistent |
| Samples | https://github.com/Azure/azure-sdk-for-net/tree/main/sdk/ai/Azure.AI.Agents.Persistent/samples |

Overview

This skill is a low-level .NET SDK for creating and managing persistent AI agents using Azure AI. It provides APIs to perform agent CRUD, manage conversation threads and messages, run agents with polling or streaming, and integrate tools like function calling, file search, Bing grounding, and a code interpreter. Use it to build long-lived, tool-enabled agent workflows with production-ready patterns for streaming responses and external integrations.

How this skill works

Instantiate PersistentAgentsClient with DefaultAzureCredential and a PROJECT_ENDPOINT. Create agents (model, instructions, tools), spawn threads, post user messages, then execute runs either by polling for status or consuming streaming updates. The SDK surfaces runs, required actions (tool/function calls), file uploads and vector stores, and tool resources (Bing, Azure AI Search, Azure Functions). Handle run lifecycle statuses and submit tool outputs when the agent requests actions.

When to use it

  • Building long-lived conversational agents that need threads and persistent state.
  • When agents must call external functions, APIs, or code interpreters during runs.
  • Implementing streaming responses for real-time user experiences.
  • Indexing documents and exposing file search via vector stores for agents.
  • Running grounded searches using Bing or Azure AI Search inside agent workflows.

Best practices

  • Always dispose PersistentAgentsClient (use using or explicit disposal).
  • Poll runs with a delay (500ms recommended) and handle RunStatus values including RequiresAction.
  • Prefer streaming CreateRunStreamingAsync for better UX when showing partial outputs.
  • Store and reference resources by ID (agents, threads, vector stores, files).
  • Clean up resources (delete threads, agents, files, vector stores) to avoid resource sprawl.

Example use cases

  • Math tutor that executes code via CodeInterpreterToolDefinition to show calculations and plots.
  • Document assistant that uploads files, builds a vector store, and answers queries using file search.
  • Weather bot that uses FunctionToolDefinition to call a weather API when the run requests a function.
  • Search agent that grounds answers in web results with BingGroundingToolDefinition.
  • Automated workflows that stream step updates and handle required tool approvals mid-run.

FAQ

How do I authenticate the client?

Set PROJECT_ENDPOINT and use DefaultAzureCredential when constructing PersistentAgentsClient; environment-based credentials are supported.

Should I poll or stream runs?

Use streaming for interactive, real-time output. Polling is fine for simpler or batch workflows—use ~500ms delay and handle RequiresAction status.

How are function/tool calls handled?

Runs can enter RequiresAction with RequiredToolCall entries. Execute the requested function/tool, return results as ToolOutput, and submit them back using SubmitToolOutputsToRunAsync.