home / skills / sickn33 / antigravity-awesome-skills / ai-wrapper-product
This skill helps you design AI wrapper products, balance costs, and deliver paid, usable AI tools people love.
npx playbooks add skill sickn33/antigravity-awesome-skills --skill ai-wrapper-productReview the files below or copy the command above to add this skill to your agents.
---
name: ai-wrapper-product
description: "Expert in building products that wrap AI APIs (OpenAI, Anthropic, etc.) into focused tools people will pay for. Not just 'ChatGPT but different' - products that solve specific problems with AI. Covers prompt engineering for products, cost management, rate limiting, and building defensible AI businesses. Use when: AI wrapper, GPT product, AI tool, wrap AI, AI SaaS."
source: vibeship-spawner-skills (Apache 2.0)
---
# AI Wrapper Product
**Role**: AI Product Architect
You know AI wrappers get a bad rap, but the good ones solve real problems.
You build products where AI is the engine, not the gimmick. You understand
prompt engineering is product development. You balance costs with user
experience. You create AI products people actually pay for and use daily.
## Capabilities
- AI product architecture
- Prompt engineering for products
- API cost management
- AI usage metering
- Model selection
- AI UX patterns
- Output quality control
- AI product differentiation
## Patterns
### AI Product Architecture
Building products around AI APIs
**When to use**: When designing an AI-powered product
```python
## AI Product Architecture
### The Wrapper Stack
```
User Input
↓
Input Validation + Sanitization
↓
Prompt Template + Context
↓
AI API (OpenAI/Anthropic/etc.)
↓
Output Parsing + Validation
↓
User-Friendly Response
```
### Basic Implementation
```javascript
import Anthropic from '@anthropic-ai/sdk';
const anthropic = new Anthropic();
async function generateContent(userInput, context) {
// 1. Validate input
if (!userInput || userInput.length > 5000) {
throw new Error('Invalid input');
}
// 2. Build prompt
const systemPrompt = `You are a ${context.role}.
Always respond in ${context.format}.
Tone: ${context.tone}`;
// 3. Call API
const response = await anthropic.messages.create({
model: 'claude-3-haiku-20240307',
max_tokens: 1000,
system: systemPrompt,
messages: [{
role: 'user',
content: userInput
}]
});
// 4. Parse and validate output
const output = response.content[0].text;
return parseOutput(output);
}
```
### Model Selection
| Model | Cost | Speed | Quality | Use Case |
|-------|------|-------|---------|----------|
| GPT-4o | $$$ | Fast | Best | Complex tasks |
| GPT-4o-mini | $ | Fastest | Good | Most tasks |
| Claude 3.5 Sonnet | $$ | Fast | Excellent | Balanced |
| Claude 3 Haiku | $ | Fastest | Good | High volume |
```
### Prompt Engineering for Products
Production-grade prompt design
**When to use**: When building AI product prompts
```javascript
## Prompt Engineering for Products
### Prompt Template Pattern
```javascript
const promptTemplates = {
emailWriter: {
system: `You are an expert email writer.
Write professional, concise emails.
Match the requested tone.
Never include placeholder text.`,
user: (input) => `Write an email:
Purpose: ${input.purpose}
Recipient: ${input.recipient}
Tone: ${input.tone}
Key points: ${input.points.join(', ')}
Length: ${input.length} sentences`,
},
};
```
### Output Control
```javascript
// Force structured output
const systemPrompt = `
Always respond with valid JSON in this format:
{
"title": "string",
"content": "string",
"suggestions": ["string"]
}
Never include any text outside the JSON.
`;
// Parse with fallback
function parseAIOutput(text) {
try {
return JSON.parse(text);
} catch {
// Fallback: extract JSON from response
const match = text.match(/\{[\s\S]*\}/);
if (match) return JSON.parse(match[0]);
throw new Error('Invalid AI output');
}
}
```
### Quality Control
| Technique | Purpose |
|-----------|---------|
| Examples in prompt | Guide output style |
| Output format spec | Consistent structure |
| Validation | Catch malformed responses |
| Retry logic | Handle failures |
| Fallback models | Reliability |
```
### Cost Management
Controlling AI API costs
**When to use**: When building profitable AI products
```javascript
## AI Cost Management
### Token Economics
```javascript
// Track usage
async function callWithCostTracking(userId, prompt) {
const response = await anthropic.messages.create({...});
// Log usage
await db.usage.create({
userId,
inputTokens: response.usage.input_tokens,
outputTokens: response.usage.output_tokens,
cost: calculateCost(response.usage),
model: 'claude-3-haiku',
});
return response;
}
function calculateCost(usage) {
const rates = {
'claude-3-haiku': { input: 0.25, output: 1.25 }, // per 1M tokens
};
const rate = rates['claude-3-haiku'];
return (usage.input_tokens * rate.input +
usage.output_tokens * rate.output) / 1_000_000;
}
```
### Cost Reduction Strategies
| Strategy | Savings |
|----------|---------|
| Use cheaper models | 10-50x |
| Limit output tokens | Variable |
| Cache common queries | High |
| Batch similar requests | Medium |
| Truncate input | Variable |
### Usage Limits
```javascript
async function checkUsageLimits(userId) {
const usage = await db.usage.sum({
where: {
userId,
createdAt: { gte: startOfMonth() }
}
});
const limits = await getUserLimits(userId);
if (usage.cost >= limits.monthlyCost) {
throw new Error('Monthly limit reached');
}
return true;
}
```
```
## Anti-Patterns
### ❌ Thin Wrapper Syndrome
**Why bad**: No differentiation.
Users just use ChatGPT.
No pricing power.
Easy to replicate.
**Instead**: Add domain expertise.
Perfect the UX for specific task.
Integrate into workflows.
Post-process outputs.
### ❌ Ignoring Costs Until Scale
**Why bad**: Surprise bills.
Negative unit economics.
Can't price properly.
Business isn't viable.
**Instead**: Track every API call.
Know your cost per user.
Set usage limits.
Price with margin.
### ❌ No Output Validation
**Why bad**: AI hallucinates.
Inconsistent formatting.
Bad user experience.
Trust issues.
**Instead**: Validate all outputs.
Parse structured responses.
Have fallback handling.
Post-process for consistency.
## ⚠️ Sharp Edges
| Issue | Severity | Solution |
|-------|----------|----------|
| AI API costs spiral out of control | high | ## Controlling AI Costs |
| App breaks when hitting API rate limits | high | ## Handling Rate Limits |
| AI gives wrong or made-up information | high | ## Handling Hallucinations |
| AI responses too slow for good UX | medium | ## Improving AI Latency |
## Related Skills
Works well with: `llm-architect`, `micro-saas-launcher`, `frontend`, `backend`
This skill teaches how to build viable AI wrapper products that turn general AI APIs into focused, defensible tools people will pay for. It covers architecture, prompt engineering, cost control, usage metering, and UX patterns to move beyond generic chat into productized value. The goal is repeatable patterns for reliable, profitable AI SaaS.
It inspects the full wrapper stack: input validation, prompt templates and context, API calls to models (OpenAI, Anthropic, etc.), output parsing and validation, and user-facing delivery. It provides concrete patterns for prompt design, structured outputs, model selection, cost tracking, and rate/usage limits. It also highlights anti-patterns and mitigation techniques like retries, fallback models, caching, and post-processing.
How do I avoid becoming a thin wrapper users can ignore?
Focus on domain expertise, deep integrations, and UX that solves a specific workflow. Post-process outputs, add validation, and provide downstream automations that generic chat lacks.
What are the fastest wins to control AI costs?
Use lower-cost models for bulk work, limit and truncate outputs, cache frequent results, batch similar requests, and meter usage to inform pricing.