home / skills / secondsky / claude-skills / recommendation-engine
This skill helps you build and evaluate personalized recommendations using collaborative filtering, matrix factorization, and hybrid methods for cold-start
npx playbooks add skill secondsky/claude-skills --skill recommendation-engineReview the files below or copy the command above to add this skill to your agents.
---
name: recommendation-engine
description: Build recommendation systems with collaborative filtering, matrix factorization, hybrid approaches. Use for product recommendations, personalization, or encountering cold start, sparsity, quality evaluation issues.
keywords: recommendation engine, collaborative filtering, matrix factorization, SVD, ALS, NMF, user-based CF, item-based CF, cold start, precision@k, recall@k, NDCG, hybrid recommender, content-based filtering, cosine similarity, implicit feedback, evaluation metrics, diversity, coverage
license: MIT
---
# Recommendation Engine
Build recommendation systems for personalized content and product suggestions.
## Recommendation Approaches
| Approach | How It Works | Pros | Cons |
|----------|--------------|------|------|
| Collaborative | User-item interactions | Discovers hidden patterns | Cold start |
| Content-based | Item features | Works for new items | Limited discovery |
| Hybrid | Combines both | Best of both | Complex |
## Collaborative Filtering
```python
import numpy as np
from scipy.sparse import csr_matrix
from sklearn.metrics.pairwise import cosine_similarity
class CollaborativeFilter:
def __init__(self):
self.user_similarity = None
self.item_similarity = None
def fit(self, user_item_matrix):
# User-based similarity
self.user_similarity = cosine_similarity(user_item_matrix)
# Item-based similarity
self.item_similarity = cosine_similarity(user_item_matrix.T)
def recommend_for_user(self, user_id, n=10):
scores = self.user_similarity[user_id].dot(self.user_item_matrix)
# Exclude already interacted items
already_interacted = self.user_item_matrix[user_id].nonzero()[0]
scores[already_interacted] = -np.inf
return np.argsort(scores)[-n:][::-1]
```
## Matrix Factorization (SVD)
```python
from sklearn.decomposition import TruncatedSVD
class MatrixFactorization:
def __init__(self, n_factors=50):
self.svd = TruncatedSVD(n_components=n_factors)
def fit(self, user_item_matrix):
self.user_factors = self.svd.fit_transform(user_item_matrix)
self.item_factors = self.svd.components_.T
def predict(self, user_id, item_id):
return np.dot(self.user_factors[user_id], self.item_factors[item_id])
```
## Hybrid Recommender
```python
class HybridRecommender:
def __init__(self, collab_weight=0.7, content_weight=0.3):
self.collab = CollaborativeFilter()
self.content = ContentBasedFilter()
self.weights = (collab_weight, content_weight)
def recommend(self, user_id, n=10):
collab_scores = self.collab.score(user_id)
content_scores = self.content.score(user_id)
combined = self.weights[0] * collab_scores + self.weights[1] * content_scores
return np.argsort(combined)[-n:][::-1]
```
## Evaluation Metrics
- Precision@K, Recall@K
- NDCG (ranking quality)
- Coverage (catalog diversity)
- A/B test conversion rate
## Cold Start Solutions
- **New users**: Popular items, onboarding preferences, demographic-based
- **New items**: Content-based bootstrapping, active learning
- **Exploration strategies**: ε-greedy, Thompson sampling bandits
## Quick Start: Build a Recommender in 5 Steps
```python
from scipy.sparse import csr_matrix
import numpy as np
# 1. Prepare user-item interaction matrix
# rows = users, cols = items, values = ratings/interactions
ratings_data = [(0, 5, 5), (0, 10, 4), (1, 5, 3), ...] # (user, item, rating)
n_users, n_items = 1000, 5000
row_idx = [r[0] for r in ratings_data]
col_idx = [r[1] for r in ratings_data]
ratings = [r[2] for r in ratings_data]
user_item_matrix = csr_matrix((ratings, (row_idx, col_idx)), shape=(n_users, n_items))
# 2. Choose and train model
from recommendation_engine import ItemBasedCollaborativeFilter # See references
model = ItemBasedCollaborativeFilter(similarity_metric='cosine', k_neighbors=20)
model.fit(user_item_matrix)
# 3. Generate recommendations
recommendations = model.recommend(user_id=42, n=10)
print(recommendations) # [(item_id, score), ...]
# 4. Evaluate on test set
from evaluation_metrics import precision_at_k, recall_at_k
test_items = {42: {10, 25, 30}} # True relevant items for user 42
rec_items = [item for item, score in recommendations]
precision = precision_at_k(rec_items, test_items[42], k=10)
recall = recall_at_k(rec_items, test_items[42], k=10)
print(f"Precision@10: {precision:.3f}, Recall@10: {recall:.3f}")
# 5. Handle cold start
from cold_start import PopularityRecommender
popularity_model = PopularityRecommender()
popularity_model.fit(interactions_with_timestamps)
new_user_recs = popularity_model.recommend(n=10)
```
## Known Issues Prevention
### 1. Popularity Bias
**Problem**: Recommending only popular items, ignoring long tail. Reduces diversity and serendipity.
**Solution**: Balance popularity with personalization, apply re-ranking for diversity:
```python
def diversify_recommendations(
recommendations: List[Tuple[int, float]],
item_features: np.ndarray,
diversity_weight: float = 0.3
) -> List[Tuple[int, float]]:
"""Re-rank to increase diversity while maintaining relevance."""
from sklearn.metrics.pairwise import cosine_distances
selected = []
candidates = recommendations.copy()
while len(selected) < len(recommendations) and candidates:
if not selected:
# First item: highest score
selected.append(candidates.pop(0))
continue
# Compute diversity scores
selected_features = item_features[[item for item, _ in selected]]
diversity_scores = []
for item, relevance in candidates:
item_feature = item_features[item].reshape(1, -1)
# Average distance to already selected items
avg_distance = cosine_distances(item_feature, selected_features).mean()
# Combined score: relevance + diversity
combined = (1 - diversity_weight) * relevance + diversity_weight * avg_distance
diversity_scores.append((item, relevance, combined))
# Select item with best combined score
best = max(diversity_scores, key=lambda x: x[2])
selected.append((best[0], best[1]))
candidates = [(i, s) for i, s, _ in diversity_scores if i != best[0]]
return selected
```
### 2. Data Sparsity (Matrix >99% Empty)
**Problem**: Collaborative filtering fails when most users have rated <1% of items.
**Solution**: Use matrix factorization (SVD, ALS) instead of memory-based CF:
```python
# ❌ Bad: User-based CF on sparse data (fails to find similar users)
user_cf = UserBasedCollaborativeFilter()
user_cf.fit(sparse_matrix) # Most users have <10 ratings
# ✅ Good: Matrix factorization handles sparsity
from sklearn.decomposition import TruncatedSVD
svd = TruncatedSVD(n_components=50)
user_factors = svd.fit_transform(sparse_matrix)
item_factors = svd.components_.T
# Predict rating: user_factors[u] @ item_factors[i]
```
### 3. Cold Start Without Fallback
**Problem**: Recommender crashes or returns empty results for new users/items.
**Solution**: Always implement fallback chain:
```python
def recommend_with_fallback(user_id, n=10):
"""Graceful degradation through fallback chain."""
try:
# Try personalized recommendations
if has_sufficient_history(user_id, min_interactions=5):
return collaborative_filter.recommend(user_id, n)
except Exception as e:
logger.warning(f"CF failed for user {user_id}: {e}")
# Fallback 1: Demographic-based
if user_demographics_available(user_id):
return demographic_recommender.recommend(user_id, n)
# Fallback 2: Popularity
return popularity_recommender.recommend(n)
```
### 4. Not Excluding Already-Interacted Items
**Problem**: Recommending items user already purchased/viewed wastes recommendation slots.
**Solution**: Always filter interacted items:
```python
# ✅ Correct: Exclude interacted items
user_items = user_item_matrix[user_id].nonzero()[1]
scores[user_items] = -np.inf # Ensure they don't appear in top-K
recommendations = np.argsort(scores)[-n:][::-1]
# ❌ Wrong: Forgetting to filter
recommendations = np.argsort(scores)[-n:][::-1] # May include already purchased!
```
### 5. Ignoring Implicit Feedback Confidence
**Problem**: Treating all clicks/views equally. 1 view ≠ 100 views.
**Solution**: Weight by interaction strength (view count, watch time, etc.):
```python
# For implicit feedback, use confidence weighting
confidence_matrix = 1 + alpha * np.log(1 + interaction_counts)
# In ALS: C_ui * (P_ui - X_ui)²
# Higher confidence for items with more interactions
```
### 6. Not Evaluating Ranking Quality (Using Only Accuracy)
**Problem**: High prediction accuracy (RMSE) doesn't mean good top-K recommendations.
**Solution**: Use ranking metrics (NDCG, MAP@K):
```python
# ❌ Bad: Only RMSE
from sklearn.metrics import mean_squared_error
rmse = np.sqrt(mean_squared_error(y_true, y_pred))
# ✅ Good: Ranking metrics for top-K evaluation
from evaluation_metrics import ndcg_at_k, mean_average_precision_at_k
# NDCG rewards putting highly relevant items first
ndcg = ndcg_at_k(recommendations, relevance_scores, k=10)
# MAP@K considers precision at each relevant item position
map_score = mean_average_precision_at_k(all_recommendations, ground_truth, k=10)
```
### 7. Filter Bubble (Lack of Exploration)
**Problem**: Always recommending similar items limits discovery, reduces user engagement over time.
**Solution**: Implement explore-exploit strategy:
```python
class ExploreExploitRecommender:
def __init__(self, base_model, epsilon=0.1):
self.base_model = base_model
self.epsilon = epsilon # 10% exploration
def recommend(self, user_id, n=10):
# Exploit: Use trained model for most recommendations
n_exploit = int(n * (1 - self.epsilon))
exploitative_recs = self.base_model.recommend(user_id, n=n_exploit)
# Explore: Add random diverse items
n_explore = n - n_exploit
explored_items = sample_diverse_items(n_explore)
return exploitative_recs + explored_items
```
## When to Load References
Load reference files when you need detailed implementations:
- **Collaborative Filtering**: Load `references/collaborative-filtering-deep-dive.md` for complete user-based and item-based CF implementations with similarity metrics (cosine, Pearson, Jaccard), scalability optimizations (sparse matrices, approximate nearest neighbors), and handling edge cases (cold start, sparsity)
- **Matrix Factorization**: Load `references/matrix-factorization-methods.md` for SVD, ALS, and NMF implementations with hyperparameter tuning, implicit feedback handling, and advanced techniques (BPR, WARP)
- **Evaluation Metrics**: Load `references/evaluation-metrics-implementation.md` for Precision@K, Recall@K, NDCG, coverage, diversity metrics, cross-validation strategies, and statistical significance testing (paired t-test, bootstrap confidence intervals)
- **Cold Start Solutions**: Load `references/cold-start-strategies.md` for new user/item strategies (popularity-based, onboarding, demographic, content-based bootstrapping, active learning), explore-exploit approaches (ε-greedy, Thompson sampling), and hybrid fallback chains
This skill builds production-ready recommendation systems using collaborative filtering, matrix factorization, and hybrid approaches. It focuses on practical solutions for personalization, cold start, sparsity, and ranking-quality evaluation. Implementations and patterns are designed to integrate with TypeScript stacks and cloud deployments.
The skill trains models on user-item interaction matrices and item features, supporting user-based and item-based collaborative filtering, SVD/ALS matrix factorization, and weighted hybrid blending. It provides evaluation tooling (Precision@K, Recall@K, NDCG) and fallback chains so systems degrade gracefully for new users or sparse data. Utilities include diversity re-ranking, confidence weighting for implicit feedback, and explore-exploit strategies.
How do I handle new users with no history?
Use a fallback chain: ask onboarding preference questions, apply demographic-based rules, then fall back to a popularity recommender. Also collect quick implicit signals to accelerate personalization.
When should I prefer matrix factorization over memory-based CF?
Prefer matrix factorization (SVD/ALS) when the interaction matrix is extremely sparse or when you need latent factors for scalable scoring and regularization.