home / skills / secondsky / claude-skills / model-deployment
This skill helps deploy and monitor ML models with FastAPI, Docker, and Kubernetes, ensuring scalable serving and drift-aware reliability.
npx playbooks add skill secondsky/claude-skills --skill model-deploymentReview the files below or copy the command above to add this skill to your agents.
---
name: model-deployment
description: Deploy ML models with FastAPI, Docker, Kubernetes. Use for serving predictions, containerization, monitoring, drift detection, or encountering latency issues, health check failures, version conflicts.
keywords: model deployment, FastAPI, Docker, Kubernetes, ML serving, model monitoring, drift detection, A/B testing, CI/CD, mlops, production ml, model versioning, health checks, Prometheus, containerization, rolling updates, blue-green deployment, canary deployment, model registry
license: MIT
---
# ML Model Deployment
Deploy trained models to production with proper serving and monitoring.
## Deployment Options
| Method | Use Case | Latency |
|--------|----------|---------|
| REST API | Web services | Medium |
| Batch | Large-scale processing | N/A |
| Streaming | Real-time | Low |
| Edge | On-device | Very low |
## FastAPI Model Server
```python
from fastapi import FastAPI
from pydantic import BaseModel
import joblib
import numpy as np
app = FastAPI()
model = joblib.load('model.pkl')
class PredictionRequest(BaseModel):
features: list[float]
class PredictionResponse(BaseModel):
prediction: float
probability: float
@app.get('/health')
def health():
return {'status': 'healthy'}
@app.post('/predict', response_model=PredictionResponse)
def predict(request: PredictionRequest):
features = np.array(request.features).reshape(1, -1)
prediction = model.predict(features)[0]
probability = model.predict_proba(features)[0].max()
return PredictionResponse(prediction=prediction, probability=probability)
```
## Docker Deployment
```dockerfile
FROM python:3.11-slim
WORKDIR /app
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt
COPY model.pkl .
COPY app.py .
EXPOSE 8000
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "8000"]
```
## Model Monitoring
```python
class ModelMonitor:
def __init__(self):
self.predictions = []
self.latencies = []
def log_prediction(self, input_data, prediction, latency):
self.predictions.append({
'input': input_data,
'prediction': prediction,
'latency': latency,
'timestamp': datetime.now()
})
def detect_drift(self, reference_distribution):
# Compare current predictions to reference
pass
```
## Deployment Checklist
- [ ] Model validated on test set
- [ ] API endpoints documented
- [ ] Health check endpoint
- [ ] Authentication configured
- [ ] Logging and monitoring setup
- [ ] Model versioning in place
- [ ] Rollback procedure documented
## Quick Start: Deploy Model in 6 Steps
```bash
# 1. Save trained model
import joblib
joblib.dump(model, 'model.pkl')
# 2. Create FastAPI app (see references/fastapi-production-server.md)
# app.py with /predict and /health endpoints
# 3. Create Dockerfile
cat > Dockerfile << 'EOF'
FROM python:3.11-slim
WORKDIR /app
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt
COPY app.py model.pkl ./
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "8000"]
EOF
# 4. Build and test locally
docker build -t model-api:v1.0.0 .
docker run -p 8000:8000 model-api:v1.0.0
# 5. Push to registry
docker tag model-api:v1.0.0 registry.example.com/model-api:v1.0.0
docker push registry.example.com/model-api:v1.0.0
# 6. Deploy to Kubernetes
kubectl apply -f deployment.yaml
kubectl rollout status deployment/model-api
```
## Known Issues Prevention
### 1. No Health Checks = Downtime
**Problem**: Load balancer sends traffic to unhealthy pods, causing 503 errors.
**Solution**: Implement both liveness and readiness probes:
```python
# app.py
@app.get("/health") # Liveness: Is service alive?
async def health():
return {"status": "healthy"}
@app.get("/ready") # Readiness: Can handle traffic?
async def ready():
try:
_ = model_store.model # Verify model loaded
return {"status": "ready"}
except:
raise HTTPException(503, "Not ready")
```
```yaml
# deployment.yaml
livenessProbe:
httpGet:
path: /health
port: 8000
initialDelaySeconds: 30
readinessProbe:
httpGet:
path: /ready
port: 8000
initialDelaySeconds: 5
```
### 2. Model Not Found Errors in Container
**Problem**: `FileNotFoundError: model.pkl` when container starts.
**Solution**: Verify model file is copied in Dockerfile and path matches:
```dockerfile
# ❌ Wrong: Model in wrong directory
COPY model.pkl /app/models/ # But code expects /app/model.pkl
# ✅ Correct: Consistent paths
COPY model.pkl /models/model.pkl
ENV MODEL_PATH=/models/model.pkl
# In Python:
model_path = os.getenv("MODEL_PATH", "/models/model.pkl")
```
### 3. Unhandled Input Validation = 500 Errors
**Problem**: Invalid inputs crash API with unhandled exceptions.
**Solution**: Use Pydantic for automatic validation:
```python
from pydantic import BaseModel, Field, validator
class PredictionRequest(BaseModel):
features: List[float] = Field(..., min_items=1, max_items=100)
@validator('features')
def validate_finite(cls, v):
if not all(np.isfinite(val) for val in v):
raise ValueError("All features must be finite")
return v
# FastAPI auto-validates and returns 422 for invalid requests
@app.post("/predict")
async def predict(request: PredictionRequest):
# Request is guaranteed valid here
pass
```
### 4. No Drift Monitoring = Silent Degradation
**Problem**: Model performance degrades over time, no one notices until users complain.
**Solution**: Implement drift detection (see references/model-monitoring-drift.md):
```python
monitor = ModelMonitor(reference_data=training_data, drift_threshold=0.1)
@app.post("/predict")
async def predict(request: PredictionRequest):
prediction = model.predict(features)
monitor.log_prediction(features, prediction, latency)
# Alert if drift detected
if monitor.should_retrain():
alert_manager.send_alert("Model drift detected - retrain recommended")
return prediction
```
### 5. Missing Resource Limits = OOM Kills
**Problem**: Pod killed by Kubernetes OOMKiller, service goes down.
**Solution**: Set memory/CPU limits and requests:
```yaml
resources:
requests:
memory: "512Mi" # Guaranteed
cpu: "500m"
limits:
memory: "1Gi" # Max allowed
cpu: "1000m"
# Monitor actual usage:
kubectl top pods
```
### 6. No Rollback Plan = Stuck on Bad Deploy
**Problem**: New model version has bugs, no way to revert quickly.
**Solution**: Tag images with versions, keep previous deployment:
```bash
# Deploy with version tag
kubectl set image deployment/model-api model-api=registry/model-api:v1.2.0
# If issues, rollback to previous
kubectl rollout undo deployment/model-api
# Or specify version
kubectl set image deployment/model-api model-api=registry/model-api:v1.1.0
```
### 7. Synchronous Prediction = Slow Batch Processing
**Problem**: Processing 10,000 predictions one-by-one takes hours.
**Solution**: Implement batch endpoint:
```python
@app.post("/predict/batch")
async def predict_batch(request: BatchPredictionRequest):
# Process all at once (vectorized)
features = np.array(request.instances)
predictions = model.predict(features) # Much faster!
return {"predictions": predictions.tolist()}
```
### 8. No CI/CD Validation = Deploy Bad Models
**Problem**: Deploying model that fails basic tests, breaking production.
**Solution**: Validate in CI pipeline (see references/cicd-ml-models.md):
```yaml
# .github/workflows/deploy.yml
- name: Validate model performance
run: |
python scripts/validate_model.py \
--model model.pkl \
--test-data test.csv \
--min-accuracy 0.85 # Fail if below threshold
```
## Best Practices
- **Version everything**: Models (semantic versioning), Docker images, deployments
- **Monitor continuously**: Latency, error rate, drift, resource usage
- **Test before deploy**: Unit tests, integration tests, performance benchmarks
- **Deploy gradually**: Canary (10%), then full rollout
- **Plan for rollback**: Keep previous version, document procedure
- **Log predictions**: Enable debugging and drift detection
- **Set resource limits**: Prevent OOM kills and resource contention
- **Use health checks**: Enable proper load balancing
## When to Load References
Load reference files for detailed implementations:
- **FastAPI Production Server**: Load `references/fastapi-production-server.md` for complete production-ready FastAPI implementation with error handling, validation (Pydantic models), logging, health/readiness probes, batch predictions, model versioning, middleware, exception handlers, and performance optimizations (caching, async)
- **Model Monitoring & Drift**: Load `references/model-monitoring-drift.md` for ModelMonitor implementation with KS-test drift detection, Jensen-Shannon divergence, Prometheus metrics integration, alert configuration (Slack, email), continuous monitoring service, and dashboard endpoints
- **Containerization & Deployment**: Load `references/containerization-deployment.md` for multi-stage Dockerfiles, model versioning in containers, Docker Compose setup, A/B testing with Nginx, Kubernetes deployments (rolling update, blue-green, canary), GitHub Actions CI/CD, and deployment checklists
- **CI/CD for ML Models**: Load `references/cicd-ml-models.md` for complete GitHub Actions pipeline with model validation, data validation, automated testing, security scanning, performance benchmarks, automated rollback, and deployment strategies
This skill helps deploy machine learning models to production using FastAPI, Docker, and Kubernetes. It provides ready patterns for serving predictions, containerization, monitoring, health checks, and rollback procedures. The goal is a reliable, observable model service with versioning and drift detection.
It scaffolds a FastAPI prediction server with health and readiness endpoints, Pydantic-based input validation, and optional batch endpoints for vectorized inference. It includes Dockerfile patterns, Kubernetes probe and resource templates, and a simple ModelMonitor for logging, latency tracking, and drift detection. The skill also outlines CI/CD checks, image tagging, and rollout/rollback commands for safe deployments.
How do I avoid FileNotFoundError for the model inside the container?
Ensure the Dockerfile copies the model to the same path your app expects, or set MODEL_PATH via ENV and read it in code.
What probes should I add to Kubernetes?
Add a liveness probe pointing to /health and a readiness probe to /ready; tune initialDelaySeconds to allow model loading.