home / skills / secondsky / claude-skills / bun-workers

bun-workers skill

/plugins/bun/skills/bun-workers

This skill enables parallel execution with Bun Web Workers and worker_threads to boost performance and responsiveness in complex tasks.

npx playbooks add skill secondsky/claude-skills --skill bun-workers

Review the files below or copy the command above to add this skill to your agents.

Files (1)
SKILL.md
8.2 KB
---
name: Bun Workers
description: Use for Web Workers in Bun, worker_threads, parallel processing, and background tasks.
version: 1.0.0
---

# Bun Workers

Bun supports Web Workers and Node.js worker_threads for parallel execution.

## Web Workers

### Basic Usage

```typescript
// main.ts
const worker = new Worker(new URL("./worker.ts", import.meta.url));

worker.postMessage({ type: "start", data: [1, 2, 3, 4, 5] });

worker.onmessage = (event) => {
  console.log("Result:", event.data);
};

worker.onerror = (error) => {
  console.error("Worker error:", error.message);
};

// worker.ts
self.onmessage = (event) => {
  const { type, data } = event.data;

  if (type === "start") {
    const result = data.map((x) => x * 2);
    self.postMessage(result);
  }
};
```

### Worker with URL

```typescript
// Import from file path
const worker = new Worker(new URL("./worker.ts", import.meta.url));

// Or with blob URL
const code = `
  self.onmessage = (e) => {
    self.postMessage(e.data * 2);
  };
`;
const blob = new Blob([code], { type: "application/javascript" });
const worker = new Worker(URL.createObjectURL(blob));
```

### Transferable Objects

```typescript
// main.ts
const buffer = new ArrayBuffer(1024 * 1024); // 1MB
const view = new Uint8Array(buffer);
view.fill(42);

// Transfer ownership (zero-copy)
worker.postMessage({ buffer }, [buffer]);
// buffer is now detached (empty)

// worker.ts
self.onmessage = (event) => {
  const { buffer } = event.data;
  const view = new Uint8Array(buffer);
  // Process buffer...

  // Transfer back
  self.postMessage({ buffer }, [buffer]);
};
```

### Shared Memory

```typescript
// main.ts
const shared = new SharedArrayBuffer(1024);
const view = new Int32Array(shared);

worker.postMessage({ shared });

// Both main and worker can access
Atomics.add(view, 0, 1);

// worker.ts
self.onmessage = (event) => {
  const { shared } = event.data;
  const view = new Int32Array(shared);

  // Atomic operations for thread safety
  Atomics.add(view, 0, 1);
  Atomics.notify(view, 0);
};
```

## Node.js worker_threads

```typescript
// main.ts
import { Worker, isMainThread, parentPort, workerData } from "worker_threads";

if (isMainThread) {
  const worker = new Worker(import.meta.filename, {
    workerData: { numbers: [1, 2, 3, 4, 5] },
  });

  worker.on("message", (result) => {
    console.log("Result:", result);
  });

  worker.on("error", (err) => {
    console.error("Error:", err);
  });

  worker.on("exit", (code) => {
    console.log("Worker exited with code:", code);
  });
} else {
  // Worker code
  const { numbers } = workerData;
  const sum = numbers.reduce((a, b) => a + b, 0);
  parentPort?.postMessage(sum);
}
```

### Worker Pool

```typescript
// worker-pool.ts
import { Worker } from "worker_threads";

class WorkerPool {
  private workers: Worker[] = [];
  private queue: Array<{
    task: any;
    resolve: (value: any) => void;
    reject: (err: Error) => void;
  }> = [];
  private activeWorkers = new Set<Worker>();

  constructor(
    private workerPath: string,
    private poolSize: number
  ) {
    for (let i = 0; i < poolSize; i++) {
      this.addWorker();
    }
  }

  private addWorker() {
    const worker = new Worker(this.workerPath);

    worker.on("message", (result) => {
      this.activeWorkers.delete(worker);
      this.processQueue();
    });

    worker.on("error", (err) => {
      this.activeWorkers.delete(worker);
      console.error("Worker error:", err);
    });

    this.workers.push(worker);
  }

  async execute(task: any): Promise<any> {
    return new Promise((resolve, reject) => {
      this.queue.push({ task, resolve, reject });
      this.processQueue();
    });
  }

  private processQueue() {
    for (const worker of this.workers) {
      if (!this.activeWorkers.has(worker) && this.queue.length > 0) {
        const { task, resolve, reject } = this.queue.shift()!;
        this.activeWorkers.add(worker);

        worker.once("message", resolve);
        worker.once("error", reject);
        worker.postMessage(task);
      }
    }
  }

  terminate() {
    this.workers.forEach((w) => w.terminate());
  }
}

// Usage
const pool = new WorkerPool("./worker.ts", 4);
const results = await Promise.all([
  pool.execute({ task: 1 }),
  pool.execute({ task: 2 }),
  pool.execute({ task: 3 }),
]);
pool.terminate();
```

## Patterns

### CPU-Intensive Tasks

```typescript
// main.ts
const worker = new Worker(new URL("./cpu-worker.ts", import.meta.url));

// Process large dataset
const data = Array.from({ length: 1000000 }, () => Math.random());

worker.postMessage({ type: "process", data });

worker.onmessage = (event) => {
  if (event.data.type === "progress") {
    console.log(`Progress: ${event.data.percent}%`);
  } else if (event.data.type === "result") {
    console.log("Done:", event.data.result);
  }
};

// cpu-worker.ts
self.onmessage = (event) => {
  const { type, data } = event.data;

  if (type === "process") {
    const chunkSize = 10000;
    let result = 0;

    for (let i = 0; i < data.length; i++) {
      result += Math.sqrt(data[i]);

      // Report progress
      if (i % chunkSize === 0) {
        self.postMessage({
          type: "progress",
          percent: Math.round((i / data.length) * 100),
        });
      }
    }

    self.postMessage({ type: "result", result });
  }
};
```

### Parallel Map

```typescript
async function parallelMap<T, R>(
  items: T[],
  fn: string, // Function name in worker
  workerUrl: URL,
  concurrency = 4
): Promise<R[]> {
  const results: R[] = new Array(items.length);
  const workers: Worker[] = [];

  // Create workers
  for (let i = 0; i < concurrency; i++) {
    workers.push(new Worker(workerUrl));
  }

  // Process items
  let nextIndex = 0;
  const processNext = (worker: Worker): Promise<void> => {
    return new Promise((resolve) => {
      if (nextIndex >= items.length) {
        resolve();
        return;
      }

      const index = nextIndex++;
      worker.postMessage({ fn, item: items[index], index });

      worker.onmessage = (event) => {
        results[event.data.index] = event.data.result;
        processNext(worker).then(resolve);
      };
    });
  };

  await Promise.all(workers.map(processNext));

  workers.forEach((w) => w.terminate());
  return results;
}
```

### Message Channel

```typescript
// Create channel for worker-to-worker communication
const channel = new MessageChannel();

const worker1 = new Worker(new URL("./worker1.ts", import.meta.url));
const worker2 = new Worker(new URL("./worker2.ts", import.meta.url));

// Give each worker a port
worker1.postMessage({ port: channel.port1 }, [channel.port1]);
worker2.postMessage({ port: channel.port2 }, [channel.port2]);

// worker1.ts
let port: MessagePort;
self.onmessage = (event) => {
  if (event.data.port) {
    port = event.data.port;
    port.onmessage = (e) => console.log("From worker2:", e.data);
    port.postMessage("Hello from worker1!");
  }
};
```

## Error Handling

```typescript
const worker = new Worker(new URL("./worker.ts", import.meta.url));

worker.onerror = (error) => {
  console.error("Uncaught error in worker:", error.message);
  error.preventDefault(); // Prevent bubbling
};

worker.onmessageerror = (event) => {
  console.error("Message deserialization failed");
};

// In worker
self.onerror = (error) => {
  self.postMessage({ type: "error", message: error.message });
};
```

## Termination

```typescript
const worker = new Worker(new URL("./worker.ts", import.meta.url));

// Request graceful shutdown
worker.postMessage({ type: "shutdown" });

// Force terminate after timeout
setTimeout(() => {
  worker.terminate();
}, 5000);

// In worker
self.onmessage = (event) => {
  if (event.data.type === "shutdown") {
    // Cleanup
    self.close();
  }
};
```

## Common Errors

| Error | Cause | Fix |
|-------|-------|-----|
| `Worker not found` | Wrong URL | Check worker file path |
| `Cannot serialize` | Non-transferable data | Use transferable objects |
| `DataCloneError` | Functions/DOM in message | Send only serializable data |
| `Worker terminated` | Premature terminate | Check termination logic |

## When to Load References

Load `references/optimization.md` when:
- Worker pool tuning
- Memory management
- Performance profiling

Load `references/patterns.md` when:
- Complex coordination
- Backpressure handling
- Error recovery

Overview

This skill provides practical, production-ready patterns for running Web Workers and Node.js worker_threads in Bun. It focuses on parallel processing, worker pools, shared memory, transferable objects, and robust error and shutdown handling. Use it to move CPU-bound or background work off the main thread and scale concurrency safely.

How this skill works

The skill shows how to spawn workers from file URLs or blob code, post and receive messages, and use transferable objects and SharedArrayBuffer for zero-copy and shared memory. It includes a worker_threads worker pool implementation for Node-style environments, plus patterns for progress reporting, parallel map, message channels, and graceful termination. Error handlers and common failure modes are documented to make production runs predictable.

When to use it

  • Offload CPU-heavy work (image processing, math, data transforms) to avoid blocking the event loop
  • Perform parallel map/reduce over large datasets with controlled concurrency
  • Run background tasks or long-running jobs while keeping the main process responsive
  • Share large binary buffers between threads without copying using transferable objects
  • Coordinate worker-to-worker communication via MessageChannel
  • Implement worker pools for throughput and task queuing

Best practices

  • Use transferable objects (ArrayBuffer) to avoid costly data copies and detect detached buffers after transfer
  • Employ SharedArrayBuffer with Atomics for low-latency coordination and safe shared counters
  • Design workers to report progress and support graceful shutdown messages for observability and cleanup
  • Limit per-worker responsibilities and use a worker pool for many short tasks to amortize startup cost
  • Always add onerror and onmessageerror handlers and send structured error messages from workers
  • Terminate or close workers after use to free resources; provide a timeout-based force-terminate fallback

Example use cases

  • Image or media processing pipelines that need parallel decoding and encoding
  • Numeric simulations or machine-learning feature extraction off the main thread
  • A worker pool serving many small tasks (thumbnail generation, file conversions) from an HTTP server
  • Streaming or chunked processing with progress updates for long-running jobs
  • Worker-to-worker pipelines where one worker pre-processes data and another post-processes it

FAQ

When should I use SharedArrayBuffer vs transferable ArrayBuffer?

Use transferable ArrayBuffer to move ownership when you only need exclusive access in the worker. Use SharedArrayBuffer when multiple threads must concurrently read/write and coordinate via Atomics.

How do I avoid JSON serialization limits and DataCloneError?

Send only structured-clone-compatible data. For functions or complex objects, send serializable identifiers and perform logic inside the worker. Use transferable buffers for large binary payloads to avoid cloning.