home / skills / sammcj / agentic-coding / claude-agent-sdk

claude-agent-sdk skill

/Skills/claude-agent-sdk

This skill helps you architect and implement Claude Agent SDK workflows with best practices for Python and TypeScript.

npx playbooks add skill sammcj/agentic-coding --skill claude-agent-sdk

Review the files below or copy the command above to add this skill to your agents.

Files (1)
SKILL.md
15.0 KB
---
name: claude-agent-sdk
description: Use when working with Anthropic Claude Agent SDK. Provides architecture guidance, implementation patterns, best practices, and common pitfalls.
---

# Claude Agent SDK

## Overview

The Claude Agent SDK enables building autonomous AI agents with Claude through a feedback loop architecture. Available for Python (3.10+) and TypeScript (Node 18+).

**Repository:**
- Python: https://github.com/anthropics/claude-agent-sdk-python
- TypeScript: https://github.com/anthropics/claude-agent-sdk-typescript

**Documentation:** https://platform.claude.com/docs/en/agent-sdk/overview

## Installation

```bash
# Python
pip install claude-agent-sdk

# TypeScript
npm install @anthropic-ai/agent-sdk
```

## Core Architecture: Feedback Loop Pattern

Every agent follows this cycle:

1. **Gather Context** → filesystem navigation, subagents, tools
2. **Take Action** → tools, bash, code generation, MCP
3. **Verify Work** → rules-based, visual, LLM-as-judge
4. **Repeat** → iterate until completion

This pattern applies whether you're building a simple script or a complex multi-agent system.

## Execution Mechanisms (Priority Order)

Choose mechanisms based on task requirements:

1. **Custom Tools** → Primary workflows (appear prominently in context)
2. **Bash** → Flexible one-off operations
3. **Code Generation** → Complex, reusable outputs (prefer TypeScript for linting feedback)
4. **MCP** → Pre-built external integrations (Slack, GitHub, databases)

**Rule:** Use tools for repeatable operations, bash for exploration, code generation when you need structured output that can be validated.

## Quick Start Patterns

### Python: Basic Query

```python
from claude_agent_sdk import query

result = await query(
    model="claude-sonnet-4-5",
    system_prompt="You are a helpful coding assistant.",
    user_message="List files in current directory",
    working_dir=".",
)
print(result.final_message)
```

### TypeScript: Session Management

```typescript
import { ClaudeSdkClient } from '@anthropic-ai/agent-sdk';

const client = new ClaudeSdkClient({ apiKey: process.env.ANTHROPIC_API_KEY });

const result = await client.query({
  model: 'claude-sonnet-4-5',
  systemPrompt: 'You are a helpful coding assistant.',
  userMessage: 'List files in current directory',
  workingDir: '.',
});

console.log(result.finalMessage);
```

## Key Components

### 1. Custom Tools (SDK MCP Servers)

In-process tools with no subprocess overhead. Primary building block for agents.

**Python:**
```python
from claude_agent_sdk.mcp import tool, create_sdk_mcp_server

@tool(
    name="calculator",
    description="Perform calculations",
    input_schema={"expression": str}
)
async def calculator(args):
    result = eval(args["expression"])  # Use safe eval in production
    return {"content": [{"type": "text", "text": str(result)}]}

server = create_sdk_mcp_server(name="math", tools=[calculator])
```

**TypeScript:**
```typescript
import { createSdkMcpServer, tool } from '@anthropic-ai/agent-sdk';
import { z } from 'zod';

const calculator = tool({
  name: 'calculator',
  description: 'Perform calculations',
  inputSchema: z.object({ expression: z.string() }),
  async execute({ expression }) {
    const result = eval(expression); // Use safe eval in production
    return { content: [{ type: 'text', text: String(result) }] };
  },
});

const server = createSdkMcpServer({ name: 'math', tools: [calculator] });
```

**Benefits over external MCP:** Better performance, easier debugging, shared memory space, no IPC overhead.

### 2. Hooks (Lifecycle Callbacks)

Intercept and modify agent behaviour at specific points.

**Available hooks:**
- `PreToolUse` → Validate/modify/deny tool calls before execution
- `PostToolUse` → Process/log/modify tool results
- `Stop` → Handle completion events

**Python validation example:**
```python
async def validate_command(input_data, tool_use_id, context):
    if "rm -rf" in input_data["tool_input"].get("command", ""):
        return {
            "hookSpecificOutput": {
                "permissionDecision": "deny",
                "permissionDecisionReason": "Dangerous command blocked"
            }
        }
```

**TypeScript logging example:**
```typescript
const loggingHook = {
  matcher: (input) => input.toolName === 'bash',
  async handler(input, toolUseId, context) {
    console.log(`Executing: ${input.toolInput.command}`);
  }
};
```

### 3. Permission System

Four modes with progressively less restriction:

- `default` → Prompt for each tool use
- `plan` → Agent can read/explore freely, prompts for modifications
- `acceptEdits` → Auto-approve file edits, prompt for bash/destructive ops
- `bypassPermissions` → Fully autonomous (use carefully)

**Dynamic control with `canUseTool`:**
```python
async def permission_callback(tool_name, tool_input, context):
    if tool_name == "bash" and "git push" in tool_input.get("command", ""):
        return False  # Deny
    return True  # Allow
```

### 4. Subagents

Isolated agents with separate context windows and specialised capabilities.

**When to use:**
- Parallel processing of independent tasks
- Context isolation (prevent one task from bloating main context)
- Specialised agents with different tools/models

**Python:**
```python
from claude_agent_sdk import ClaudeAgentOptions

options = ClaudeAgentOptions(
    subagent_definitions={
        "researcher": {
            "tools": ["read", "grep", "glob"],
            "model": "claude-haiku-4",
            "description": "Fast research agent"
        }
    }
)
```

**TypeScript:**
```typescript
const options = {
  subagentDefinitions: {
    researcher: {
      tools: ['read', 'grep', 'glob'],
      model: 'claude-haiku-4',
      description: 'Fast research agent'
    }
  }
};
```

### 5. Context Management

**Agentic Search (Preferred):**
Use bash + filesystem navigation (grep, ls, tail) before reaching for semantic search. Simpler and more reliable.

**Automatic Compaction:**
SDK automatically summarises messages when approaching token limits. Transparent and automatic.

**Folder Structure as Context Engineering:**
Organise files intentionally—directory structure is visible to the agent and influences its understanding.

## Verification Patterns

### Rules-Based (Preferred)
Explicit validation enables self-correction:
```python
# In PostToolUse hook
if tool_name == "write":
    # Run linter on generated file
    lint_result = run_linter(tool_output)
    if lint_result.has_errors:
        return {"continue": True}  # Let agent fix errors
```

### Visual Feedback
For UI tasks, screenshot and re-evaluate:
```python
@tool(name="check_ui", description="Verify UI matches requirements")
async def check_ui(args):
    screenshot = take_screenshot(args["url"])
    # Return screenshot to agent for evaluation
    return {"content": [{"type": "image", "source": screenshot}]}
```

### LLM-as-Judge
Only for fuzzy criteria where rules don't work (higher latency):
```python
judge_result = await secondary_model.evaluate(
    criteria="Does output match tone guidelines?",
    output=agent_output
)
```

## Common Pitfalls & Solutions

### 1. System Prompt Not Loading
**Symptom:** CLAUDE.md ignored, custom prompts not applied
**Solution:** Set `setting_sources=["project"]` or `["user", "project"]`

```python
# Python
options = ClaudeAgentOptions(setting_sources=["project"])

# TypeScript
const options = { settingSources: ['project'] };
```

### 2. Tool Not Available
**Symptom:** "Tool not found" errors
**Solution:** Check MCP tool naming: `mcp__{server_name}__{tool_name}`

### 3. Permission Denied
**Symptom:** Agent can't access directories
**Solution:** Add directories explicitly:

```python
options = ClaudeAgentOptions(add_dirs=["/path/to/data"])
```

### 4. Python Keyword Conflicts
**Symptom:** Syntax errors with `async` or `continue` parameters
**Solution:** Use `async_` and `continue_` (SDK auto-converts)

```python
# Use async_ not async
hook_result = {"async_": True, "continue_": False}
```

### 5. Context Overflow
**Symptom:** Token limit errors
**Solution:** Use subagents for isolation or let automatic compaction handle it

### 6. Tool Execution Failures
**Symptom:** Tools fail silently or with unclear errors
**Solution:** Return structured error messages in tool responses:

```python
return {
    "content": [{
        "type": "text",
        "text": "Error: Invalid input. Expected format: ...",
        "isError": True
    }]
}
```

### 7. External MCP Server Not Connecting
**Symptom:** stdio/SSE MCP servers timeout
**Solution:** Verify server is executable and logs are accessible:

```python
# Check server stderr in context.mcp_server_logs
async def debug_hook(input_data, tool_use_id, context):
    print(context.mcp_server_logs.get("server_name"))
```

## Language-Specific Considerations

### Python vs TypeScript

| Aspect | Python | TypeScript |
|--------|--------|------------|
| **Runtime** | `anyio.run(main)` | Native async/await |
| **Min Version** | Python 3.10+ | Node.js 18+ |
| **Type Safety** | Type hints optional | Strict types with Zod |
| **Hook Fields** | `async_`, `continue_` | `async`, `continue` |
| **CLI** | Bundled (no install) | Separate install needed |
| **Tool Validation** | Dict-based schemas | Zod schemas |

### TypeScript Advantages
- Linting provides extra feedback layer for generated code
- Stronger type safety catches errors earlier
- Better IDE integration

### Python Advantages
- Simpler setup for data science workflows
- Direct integration with ML/data tools
- More concise for scripting tasks

## Decision Frameworks

### When to Use Claude Agent SDK

✅ **Use when:**
- Building autonomous agents that need computer access
- Iterative workflows with verification loops
- Multi-step tasks requiring context and tool use
- Custom tool integration requirements
- Need for permission control and safety

❌ **Don't use when:**
- Simple API calls sufficient (use Messages API)
- No tool/computer access needed
- Purely conversational applications
- Real-time streaming responses critical

### Tool vs Bash vs Code Generation

**Use Custom Tools when:**
- Operation repeats frequently
- Need structured input/output validation
- Want prominent placement in agent context
- Require error handling and retry logic

**Use Bash when:**
- One-off exploration or debugging
- System operations (git, file management)
- Flexible scripting without formal structure

**Use Code Generation when:**
- Need structured, reusable output
- Can validate with linting/compilation
- Building components or modules
- TypeScript preferred for feedback quality

### SDK MCP vs External MCP

**Use SDK MCP (in-process) when:**
- Building custom tools for your agent
- Performance matters (no subprocess overhead)
- Need shared state with main process
- Debugging tool logic

**Use External MCP (stdio/SSE) when:**
- Integrating third-party services
- Tool needs isolation
- Using pre-built MCP servers
- Cross-language tool requirements

## Session Management

### Resuming Sessions

**Python:**
```python
# First run
result1 = await query(user_message="Create a file", working_dir=".")

# Resume with new message
result2 = await query(
    user_message="Now modify it",
    working_dir=".",
    session_id=result1.session_id
)
```

**TypeScript:**
```typescript
// First run
const result1 = await client.query({ userMessage: 'Create a file' });

// Resume
const result2 = await client.query({
  userMessage: 'Now modify it',
  sessionId: result1.sessionId
});
```

### Forking Sessions

Create alternative branches from a point:

```python
# Fork for different approach
result_fork = await query(
    user_message="Try different implementation",
    session_id=original_result.session_id,
    fork_session=True
)
```

## Budget Control

Set USD spending limits:

```python
options = ClaudeAgentOptions(budget={"usd": 5.00})
```

Agent stops when budget exceeded. Useful for cost control in production.

## Testing Patterns

### Mock Tools for Testing

**Python:**
```python
import pytest
from unittest.mock import AsyncMock

@pytest.fixture
def mock_tool():
    return AsyncMock(return_value={
        "content": [{"type": "text", "text": "mocked"}]
    })

async def test_agent(mock_tool):
    server = create_sdk_mcp_server(name="test", tools=[mock_tool])
    # Test with mocked tool
```

**TypeScript:**
```typescript
import { jest } from '@jest/globals';

const mockTool = {
  name: 'test',
  execute: jest.fn().mockResolvedValue({
    content: [{ type: 'text', text: 'mocked' }]
  })
};
```

### Integration Testing

Test with real tools in isolated environment:

```python
import tempfile
import os

async def test_file_operations():
    with tempfile.TemporaryDirectory() as tmpdir:
        result = await query(
            user_message="Create test.txt with content 'hello'",
            working_dir=tmpdir,
            permission_mode="bypassPermissions"
        )
        assert os.path.exists(f"{tmpdir}/test.txt")
```

## Migration from Claude Code SDK

If migrating from the deprecated `claude-code-sdk`:

1. **Package renamed:** `claude-code-sdk` → `claude-agent-sdk`
2. **System prompt not default:** Must explicitly set or enable via `setting_sources`
3. **Type renamed (Python):** `ClaudeCodeOptions` → `ClaudeAgentOptions`
4. **Settings sources not automatic:** Must set `setting_sources=["project"]`

See migration guide: https://platform.claude.com/docs/en/agent-sdk/migration-guide

## Performance Optimisation

1. **Use Haiku for simple tasks** → 5x cheaper, faster for research/exploration
2. **SDK MCP over external** → No subprocess overhead
3. **Batch operations** → Combine file operations when possible
4. **Set turn limits** → Prevent infinite loops (`turn_limit` parameter)
5. **Monitor token usage** → Use budget controls in production

## Security Best Practices

1. **Always validate tool inputs** → Never trust unchecked input
2. **Use permission callbacks** → Deny dangerous operations dynamically
3. **Restrict filesystem access** → Use `add_dirs` to limit scope
4. **Sandbox external MCP servers** → Isolate third-party tools
5. **Set budgets** → Prevent runaway costs
6. **Log all tool uses** → Audit trail via PostToolUse hooks
7. **Never hardcode API keys** → Use environment variables

## Key Principles

1. **Folder structure is context engineering** → Organise intentionally
2. **Rules-based feedback enables self-correction** → Add linting and validation
3. **Start with agentic search** → Bash navigation before semantic search
4. **Tools are primary, bash is secondary** → Use tools for repeatable operations
5. **TypeScript for generated code** → Extra feedback layer improves quality
6. **Verification closes the loop** → Always validate agent work
7. **Use subagents for isolation** → Prevent context bloat and enable parallelism

## Additional Resources

- **API Reference (Python):** https://platform.claude.com/docs/en/agent-sdk/python
- **API Reference (TypeScript):** https://platform.claude.com/docs/en/agent-sdk/typescript
- **Examples Repository:** https://github.com/anthropics/claude-agent-sdk-demos
- **Engineering Blog:** https://www.anthropic.com/engineering/building-agents-with-the-claude-agent-sdk

Overview

This skill provides practical guidance for building autonomous agents with the Claude Agent SDK for Python and TypeScript. It explains the feedback-loop architecture, execution mechanisms, and core components like custom tools, hooks, permissions, and subagents. The content focuses on implementation patterns, common pitfalls, and decision frameworks to make agent development safer and more reliable.

How this skill works

The skill inspects the agent feedback-loop: gather context, take action, verify work, and repeat until finished. It maps available execution mechanisms (custom tools, bash, code generation, MCP) to typical task requirements and shows how to wire tools, hooks, and permission callbacks into agent runs. It also covers context management, session forking/resuming, verification patterns (rules, visual, LLM-as-judge), and testing strategies.

When to use it

  • Building autonomous agents that need filesystem or external tool access
  • Multi-step workflows that require verification and iterative correction
  • Projects needing custom in-process tools with shared state and low latency
  • Workflows that require fine-grained permission control and safety checks
  • When you need to manage large context by isolating work into subagents

Best practices

  • Prefer custom SDK MCP tools for repeatable, validated operations and better performance
  • Use bash for exploratory one-off operations, code generation for structured, lintable outputs
  • Implement PreToolUse and PostToolUse hooks to validate, log, and auto-correct tool calls
  • Use permission modes and dynamic canUseTool callbacks to prevent destructive actions
  • Organise repository folders as context engineering and use automatic compaction to handle token limits
  • Write structured error responses from tools and set turn limits and budgets to avoid runaway agents

Example use cases

  • Automated repo maintenance agent that reads files, runs linters, and commits fixes with permission gating
  • Research subagent that performs fast document search and summarisation without bloating main context
  • UI testing agent that screenshots pages and uses visual verification hooks
  • Batch file transformation agent that uses custom tools for repeatable conversions and structured output
  • Integration testing with mocked tools and isolated temporary directories to validate behaviors

FAQ

How do I prevent dangerous bash commands?

Use PreToolUse hooks or canUseTool callbacks to deny commands containing dangerous patterns and set permission_mode to prompt or plan for manual approval.

When should I use subagents?

Use subagents to isolate independent tasks, limit context growth, run parallel work, or assign specialised tools/models to parts of the workflow.