home / skills / rubenpenap / epic-stack-agent-skills / epic-caching
This skill helps you implement and manage caching with cachified, SQLite and LRU caches to boost Epic Stack performance.
npx playbooks add skill rubenpenap/epic-stack-agent-skills --skill epic-cachingReview the files below or copy the command above to add this skill to your agents.
---
name: epic-caching
description: Guide on caching with cachified, SQLite cache, and LRU cache for Epic Stack
categories:
- caching
- performance
- optimization
---
# Epic Stack: Caching
## When to use this skill
Use this skill when you need to:
- Cache results of expensive queries
- Cache responses from external APIs
- Optimize performance of data that doesn't change frequently
- Implement stale-while-revalidate
- Manage cache invalidation
- Integrate cache with server timing
## Patterns and conventions
### Caching Philosophy
Following Epic Web principles:
**Weigh the cost-benefit of performance optimizations** - Caching adds complexity. Only add cache when there's a clear, measurable benefit. Don't cache "just in case" - cache when you have a real performance problem that caching solves.
**When NOT to use cache:**
- Data that changes frequently (cache invalidation becomes a problem)
- Data that's already fast to fetch (no measurable benefit)
- Data that's only fetched once (no benefit from caching)
- Simple queries that don't need optimization
- When cache invalidation logic becomes more complex than the problem it solves
**Example - Evaluating cost-benefit:**
```typescript
// ✅ Good - Cache expensive external API call
export async function getGitHubEvents({ username, timings }: { username: string; timings?: Timings }) {
return await cachified({
key: `github:${username}:events`,
cache,
timings,
getFreshValue: async () => {
// Expensive: External API call, rate limits, network latency
const response = await fetch(`https://api.github.com/users/${username}/events/public`)
return await response.json()
},
checkValue: GitHubEventSchema.array(),
ttl: 1000 * 60 * 60, // 1 hour - reasonable for external data
})
}
// ❌ Avoid - Caching simple, fast database query
export async function getUser({ userId }: { userId: string }) {
// This query is already fast - caching adds complexity without benefit
return await cachified({
key: `user:${userId}`,
cache,
getFreshValue: async () => {
// Simple query, already fast
return await prisma.user.findUnique({
where: { id: userId },
select: { id: true, username: true },
})
},
ttl: 1000 * 60 * 5,
})
// Better: Just query directly without cache
}
```
### Two Types of Cache
Epic Stack provides two types of cache:
1. **SQLite Cache** - Long-lived, replicated with LiteFS
- Persistent across restarts
- Replicated across all instances
- Ideal for data that changes infrequently
2. **LRU Cache** - Short-lived, in-memory
- Cleared on restart
- Not replicated (only on current instance)
- Ideal for deduplication and temporary cache
### Using cachified
Epic Stack uses `@epic-web/cachified` as an abstraction for cache management.
**Basic import:**
```typescript
import { cachified, cache } from '#app/utils/cache.server.ts'
import { type Timings } from '#app/utils/timing.server.ts'
```
**Basic structure:**
```typescript
export async function getCachedData({
timings,
}: {
timings?: Timings
} = {}) {
return await cachified({
key: 'my-cache-key',
cache,
timings,
getFreshValue: async () => {
// Get fresh data
return await fetchDataFromAPI()
},
checkValue: z.object({ /* schema */ }), // Validation with Zod
ttl: 1000 * 60 * 60 * 24, // 24 hours
staleWhileRevalidate: 1000 * 60 * 60 * 24 * 30, // 30 days
})
}
```
### Cache Keys
**Naming conventions:**
- Use format: `entity:identifier:data`
- Examples:
- `user:${userId}:profile`
- `note:${noteId}:full`
- `api:github:events`
- `tito:scheduled-events`
**Avoid:**
- Keys that are too long
- Keys with special characters
- Keys that don't clearly identify the content
### TTL (Time To Live)
**Define TTL:**
```typescript
await cachified({
key: 'my-key',
cache,
getFreshValue: () => fetchData(),
ttl: 1000 * 60 * 60 * 24, // 24 hours in milliseconds
})
```
**Null TTL to never expire:**
```typescript
ttl: null, // Never expires (not recommended unless necessary)
```
### Stale-While-Revalidate (SWR)
SWR allows returning stale data while fresh data is fetched in the background.
**Example:**
```typescript
await cachified({
key: 'my-key',
cache,
getFreshValue: () => fetchData(),
ttl: 1000 * 60 * 60 * 24, // 24 hours - after this it's considered stale
staleWhileRevalidate: 1000 * 60 * 60 * 24 * 30, // 30 days - up to here returns stale while revalidating
})
```
**Behavior:**
- **Less than 24h**: Returns cache, no request made
- **24h - 30 days**: Returns stale cache immediately, updates in background
- **More than 30 days**: Waits for fresh data before returning
### Validation with Zod
Always validate cached data with Zod:
```typescript
import { z } from 'zod'
const EventSchema = z.object({
id: z.string(),
title: z.string(),
date: z.string(),
})
export async function getEvents({ timings }: { timings?: Timings } = {}) {
return await cachified({
key: 'events:all',
cache,
timings,
getFreshValue: async () => {
const response = await fetch('https://api.example.com/events')
return await response.json()
},
checkValue: EventSchema.array(), // Validates it's an array of events
ttl: 1000 * 60 * 60 * 24, // 24 hours
})
}
```
If cached data doesn't pass validation, fresh data is fetched.
### Server Timing Integration
Integrate cache with server timing for monitoring:
```typescript
import { type Timings } from '#app/utils/timing.server.ts'
export async function loader({ request }: Route.LoaderArgs) {
const timings: Timings = {}
const events = await getEvents({ timings })
// Timings are automatically added to headers
return json({ events }, {
headers: combineServerTimings(timings),
})
}
```
### Cache Invalidation
**Invalidate by key:**
```typescript
import { cache } from '#app/utils/cache.server.ts'
await cache.delete('user:123:profile')
```
**Invalidate multiple keys:**
```typescript
// Search and delete matching keys
import { searchCacheKeys } from '#app/utils/cache.server.ts'
const keys = await searchCacheKeys('user:123', 100)
await Promise.all(keys.map(key => cache.delete(key)))
```
**Invalidate entire SQLite cache:**
```typescript
// Use admin dashboard or
await cache.clear() // If available
```
### Using LRU Cache
For temporary data, use LRU cache directly:
```typescript
import { lru } from '#app/utils/cache.server.ts'
// LRU cache is useful for:
// - Request deduplication
// - Very temporary cache (< 5 minutes)
// - Data that doesn't need to persist
const cachedValue = lru.get('temp-key')
if (!cachedValue) {
const freshValue = await computeExpensiveValue()
lru.set('temp-key', freshValue, { ttl: 1000 * 60 * 5 }) // 5 minutes
return freshValue
}
return cachedValue
```
### Multi-Region Cache
With LiteFS, SQLite cache is automatically replicated:
**Behavior:**
- Only the primary instance writes to cache
- Replicas can read from cache
- Writes are automatically synchronized
**Best practices:**
- Don't assume all writes are immediate
- Use `ensurePrimary()` if you need to guarantee writes
```typescript
import { ensurePrimary } from '#app/utils/litefs.server.ts'
export async function action({ request }: Route.ActionArgs) {
await ensurePrimary() // Ensure we're on primary instance
// Invalidate cache
await cache.delete('my-key')
// ...
}
```
### Error Handling
**Handle errors in getFreshValue:**
```typescript
await cachified({
key: 'my-key',
cache,
getFreshValue: async () => {
try {
return await fetchData()
} catch (error) {
console.error('Failed to fetch fresh data:', error)
throw error // Re-throw so cachified handles it
}
},
// If getFreshValue fails and there's stale cache, it returns it
fallbackToCache: true, // Default: true
})
```
### Cache Admin Dashboard
Epic Stack includes a dashboard to manage cache:
**Route:** `/admin/cache`
**Features:**
- View all cache keys
- Search keys
- View details of a key
- Delete keys
- Clear entire cache
## Common examples
### Example 1: Cache external API response
```typescript
// app/utils/api.server.ts
import { cachified, cache } from '#app/utils/cache.server.ts'
import { type Timings } from '#app/utils/timing.server.ts'
import { z } from 'zod'
const GitHubEventSchema = z.object({
id: z.string(),
type: z.string(),
actor: z.object({
login: z.string(),
}),
created_at: z.string(),
})
export async function getGitHubEvents({
username,
timings,
}: {
username: string
timings?: Timings
}) {
return await cachified({
key: `github:${username}:events`,
cache,
timings,
getFreshValue: async () => {
const response = await fetch(
`https://api.github.com/users/${username}/events/public`,
)
if (!response.ok) {
throw new Error(`GitHub API error: ${response.statusText}`)
}
const data = await response.json()
return data
},
checkValue: GitHubEventSchema.array(),
ttl: 1000 * 60 * 60, // 1 hour
staleWhileRevalidate: 1000 * 60 * 60 * 24, // 24 hours
})
}
```
### Example 2: Cache Prisma query
```typescript
// app/utils/user.server.ts
import { cachified, cache } from '#app/utils/cache.server.ts'
import { prisma } from '#app/utils/db.server.ts'
import { z } from 'zod'
const UserStatsSchema = z.object({
totalNotes: z.number(),
totalLikes: z.number(),
joinDate: z.string(),
})
export async function getUserStats({
userId,
timings,
}: {
userId: string
timings?: Timings
}) {
return await cachified({
key: `user:${userId}:stats`,
cache,
timings,
getFreshValue: async () => {
const [totalNotes, totalLikes, user] = await Promise.all([
prisma.note.count({ where: { ownerId: userId } }),
prisma.like.count({ where: { userId } }),
prisma.user.findUnique({
where: { id: userId },
select: { createdAt: true },
}),
])
return {
totalNotes,
totalLikes,
joinDate: user?.createdAt.toISOString() ?? '',
}
},
checkValue: UserStatsSchema,
ttl: 1000 * 60 * 5, // 5 minutes
staleWhileRevalidate: 1000 * 60 * 60, // 1 hour
})
}
```
### Example 3: Invalidate cache after mutation
```typescript
// app/routes/users/$username/notes/new.tsx
export async function action({ request }: Route.ActionArgs) {
const userId = await requireUserId(request)
const formData = await request.formData()
// ... validate and create note
const note = await prisma.note.create({
data: {
title,
content,
ownerId: userId,
},
include: { owner: true },
})
// Invalidate related cache
await Promise.all([
cache.delete(`user:${userId}:notes`),
cache.delete(`user:${userId}:stats`),
cache.delete(`note:${note.id}:full`),
])
return redirect(`/users/${note.owner.username}/notes/${note.id}`)
}
```
### Example 4: Cache with dependencies
```typescript
export async function getUserWithNotes({
userId,
timings,
}: {
userId: string
timings?: Timings
}) {
const user = await cachified({
key: `user:${userId}:profile`,
cache,
timings,
getFreshValue: async () => {
return await prisma.user.findUnique({
where: { id: userId },
select: {
id: true,
username: true,
name: true,
},
})
},
checkValue: z.object({
id: z.string(),
username: z.string(),
name: z.string().nullable(),
}).nullable(),
ttl: 1000 * 60 * 30, // 30 minutes
})
const notes = await cachified({
key: `user:${userId}:notes`,
cache,
timings,
getFreshValue: async () => {
return await prisma.note.findMany({
where: { ownerId: userId },
select: {
id: true,
title: true,
updatedAt: true,
},
orderBy: { updatedAt: 'desc' },
})
},
checkValue: z.array(z.object({
id: z.string(),
title: z.string(),
updatedAt: z.date(),
})),
ttl: 1000 * 60 * 10, // 10 minutes
})
return { user, notes }
}
```
### Example 5: Use LRU for deduplication
```typescript
// Avoid multiple simultaneous requests to the same URL
const requestCache = new Map<string, Promise<any>>()
export async function fetchWithDedup(url: string) {
if (requestCache.has(url)) {
return requestCache.get(url)
}
const promise = fetch(url).then(res => res.json())
requestCache.set(url, promise)
// Clean up after 1 second
setTimeout(() => {
requestCache.delete(url)
}, 1000)
return promise
}
```
## Common mistakes to avoid
- ❌ **Caching without measuring benefit**: Only add cache when there's a clear, measurable performance problem
- ❌ **Caching simple, fast queries**: Don't cache data that's already fast to fetch - it adds complexity without benefit
- ❌ **Caching frequently changing data**: Cache invalidation becomes more complex than the problem it solves
- ❌ **Caching sensitive data**: Never cache passwords, tokens, or sensitive personal data
- ❌ **TTL too long**: Avoid very long TTLs (> 1 week) unless absolutely necessary
- ❌ **Not validating cached data**: Always use `checkValue` with Zod to validate data
- ❌ **Forgetting to invalidate cache**: Invalidate cache after mutations
- ❌ **Assuming cache always works**: Cache can fail, always handle errors
- ❌ **Keys too long or ambiguous**: Use consistent and descriptive format
- ❌ **Not using timings**: Integrate with server timing for monitoring
- ❌ **Forgetting stale-while-revalidate**: Use SWR for better UX when appropriate
- ❌ **Over-caching**: Too much caching makes the system harder to understand and debug
## References
- [Epic Stack Caching Docs](../epic-stack/docs/caching.md)
- [Epic Web Principles](https://www.epicweb.dev/principles)
- [@epic-web/cachified](https://www.npmjs.com/package/@epic-web/cachified)
- `app/utils/cache.server.ts` - Cache implementation
- `app/routes/admin/cache/` - Admin dashboard
- `app/utils/timing.server.ts` - Server timing utilities
This skill provides practical guidance and utilities for caching in Epic Stack using cachified, a persistent SQLite cache (replicated with LiteFS), and an in-memory LRU cache. It focuses on when to cache, how to structure keys and TTLs, stale-while-revalidate patterns, validation with Zod, and safe invalidation patterns. The goal is measurable performance wins with minimal complexity.
The skill explains using @epic-web/cachified as the unified API that delegates to either the SQLite cache or an LRU in-memory cache. Use SQLite for persistent, replicated data and LRU for short-lived deduplication or temporary values. It shows how to define keys, TTL, stale-while-revalidate, and checkValue validation using Zod. It also covers server timing integration and multi-region write guarantees via ensurePrimary().
When should I use LRU vs SQLite cache?
Use LRU for very short-lived, in-memory deduplication or temporary values; use SQLite (with LiteFS) for persistent, replicated cache that must survive restarts.
What if cached data fails validation?
cachified will fetch fresh data if checkValue (Zod) fails. Always validate cached data to avoid serving corrupt or outdated shapes.
How do staleWhileRevalidate and TTL interact?
TTL defines when cached data is fresh. staleWhileRevalidate extends how long stale data can be returned immediately while a background refresh is attempted. Beyond that window, the system waits for fresh data.