home / skills / robdtaylor / personal-ai-infrastructure / damperengineering
This skill captures and specifies customer damper requirements, then guides material, sealing, valve, and geometry decisions for DSSV-based dampers.
npx playbooks add skill robdtaylor/personal-ai-infrastructure --skill damperengineeringReview the files below or copy the command above to add this skill to your agents.
---
name: Damperengineering
description: Hydraulic damper design engineering for customer applications. Mechanical and hydraulic engineering, materials selection (aluminium/steel), seal/O-ring design, DSSV valve specification. USE WHEN user says 'damper design', 'application engineering', 'damper spec', 'customer application', 'damping curve', 'valve sizing', 'seal design', 'O-ring', 'slyde ring', or needs to capture customer damper requirements.
---
# DamperEngineering
Hydraulic damper design engineering skill for customer application capture and specification. Combines mechanical engineering, hydraulic design, materials expertise, and sealing technology for DSSV-based damper solutions.
## Workflow Routing
| Workflow | Trigger | File |
|----------|---------|------|
| **ApplicationCapture** | "new customer", "application requirements" | `Workflows/ApplicationCapture.md` |
| **DampingDesign** | "damping curve", "force-velocity" | `Workflows/DampingDesign.md` |
| **MaterialSelection** | "material", "aluminium", "steel" | `Workflows/MaterialSelection.md` |
| **SealDesign** | "O-ring", "seal", "slyde ring" | `Workflows/SealDesign.md` |
| **ValveSpecification** | "valve sizing", "DSSV spec" | `Workflows/ValveSpecification.md` |
## Core Engineering Disciplines
### 1. Hydraulic Engineering
**Damper Hydraulics Fundamentals:**
```
┌─────────────────────────────────────────────────────────┐
│ DAMPER HYDRAULIC CIRCUIT │
├─────────────────────────────────────────────────────────┤
│ │
│ COMPRESSION STROKE │
│ ┌─────────────┐ │
│ │ Rod │ ↓ Velocity │
│ │ ──── │ │
│ │ Piston │ → Pressure builds below piston │
│ │ ════ │ │
│ │ │ → Oil forced through valve ports │
│ │ ┌───┐ │ │
│ │ │ V │ │ ← Compression valve controls flow │
│ │ └───┘ │ │
│ └─────────────┘ │
│ │
│ F = ΔP × A (Force = Pressure drop × Piston area) │
│ Q = V × A (Flow = Velocity × Annular area) │
│ │
└─────────────────────────────────────────────────────────┘
```
**Key Hydraulic Relationships:**
| Parameter | Formula | Units |
|-----------|---------|-------|
| Damping force | F = C × v^n | N |
| Flow rate | Q = A × v | m³/s |
| Pressure drop | ΔP = f(Q, orifice) | Pa |
| Reynolds number | Re = (ρ × v × D) / μ | dimensionless |
| Valve coefficient | Cv = Q × √(SG/ΔP) | varies |
**Flow Regimes:**
| Re | Regime | Damping Characteristic |
|----|--------|------------------------|
| < 2000 | Laminar | Linear (F ∝ v) |
| 2000-4000 | Transition | Mixed |
| > 4000 | Turbulent | Quadratic (F ∝ v²) |
### 2. Mechanical Engineering
**Load Path Analysis:**
```
┌─────────────────────────────────────────────────────────┐
│ DAMPER LOAD PATH │
├─────────────────────────────────────────────────────────┤
│ │
│ Vehicle Body │
│ │ │
│ ▼ │
│ ┌─────────────┐ │
│ │ Top Mount │ ← Bearing/bushing loads │
│ │ (M10-M12) │ │
│ └──────┬──────┘ │
│ │ │
│ ┌──────┴──────┐ │
│ │ Piston Rod │ ← Tension/compression, bending │
│ │ (Ø16-25mm) │ Column buckling check │
│ └──────┬──────┘ │
│ │ │
│ ┌──────┴──────┐ │
│ │ Piston │ ← Pressure differential loads │
│ │ (Ø30-50mm) │ │
│ └──────┬──────┘ │
│ │ │
│ ┌──────┴──────┐ │
│ │ Tube │ ← Hoop stress, thread loads │
│ │ (Ø40-60mm) │ │
│ └──────┬──────┘ │
│ │ │
│ ┌──────┴──────┐ │
│ │ Bottom Eye │ ← Pin bearing, fatigue │
│ │ (M10-M14) │ │
│ └─────────────┘ │
│ │ │
│ ▼ │
│ Suspension Arm │
│ │
└─────────────────────────────────────────────────────────┘
```
**Stress Calculations:**
| Component | Stress Type | Formula | Limit |
|-----------|-------------|---------|-------|
| Rod | Axial | σ = F/A | < 0.6 × Sy |
| Rod | Buckling | Pcr = π²EI/L² | SF > 3 |
| Tube | Hoop | σh = P×r/t | < 0.5 × Sy |
| Thread | Shear | τ = F/(π×d×Le) | < 0.4 × Sy |
| Eye | Bearing | σb = F/(d×t) | < Sy |
**Fatigue Considerations:**
| Application | Typical Cycles | Design Life |
|-------------|----------------|-------------|
| Road car | 10⁷-10⁸ | 200,000 km |
| Motorsport | 10⁵-10⁶ | Season/rebuild |
| Off-road | 10⁶-10⁷ | 100,000 km |
### 3. Materials Engineering
**High-Grade Aluminium Alloys:**
| Alloy | Temper | Sy (MPa) | Application | Notes |
|-------|--------|----------|-------------|-------|
| 6061 | T6 | 276 | Tubes, bodies | Good machinability, anodizes well |
| 6082 | T6 | 310 | Structural | Higher strength than 6061 |
| 7075 | T6 | 503 | High-load components | Caution: stress corrosion |
| 2024 | T351 | 324 | Fatigue-critical | Good fatigue life |
**High-Grade Steels:**
| Steel | Condition | Sy (MPa) | Application | Notes |
|-------|-----------|----------|-------------|-------|
| 4140 | QT | 655-860 | Piston rods | Chrome-plated, ground |
| 4340 | QT | 860-1100 | High-load rods | Premium fatigue |
| 17-4 PH | H900 | 1170 | Corrosion-critical | Stainless, hard chrome alternative |
| Nitriding steel | Nitrided | Surface 60 HRC | Wear surfaces | Case hardened |
**Rod Surface Treatments:**
| Treatment | Ra (μm) | Hardness | Wear | Corrosion |
|-----------|---------|----------|------|-----------|
| Hard chrome | 0.1-0.2 | 65-70 HRC | Excellent | Good |
| Nikasil | 0.1-0.2 | 55-60 HRC | Very good | Very good |
| QPQ/Nitride | 0.2-0.4 | 60-65 HRC | Good | Excellent |
| DLC | <0.1 | 70+ HRC | Excellent | Excellent |
### 4. Sealing Technology
**O-Ring Design Parameters:**
```
┌─────────────────────────────────────────────────────────┐
│ O-RING GROOVE DESIGN │
├─────────────────────────────────────────────────────────┤
│ │
│ STATIC SEAL (Face) DYNAMIC SEAL (Rod) │
│ ┌─────────────────┐ ┌─────────────────┐ │
│ │ ████████ │ │ │ ███ │ │ │
│ │ ▲ ████████ │ │ │ ███ │ │ │
│ │ │ ████████ │ │ └────███────┘ │ │
│ │ │ │ │ ███ ←Rod │ │
│ │ Groove │ │ ▲ │ │
│ │ depth │ │ │ │ │
│ └─────────────────┘ │ Radial squeeze │ │
│ └─────────────────┘ │
│ │
│ Static: 15-25% compression Dynamic: 8-16% │
│ Fill: 75-90% Fill: 70-85% │
│ │
└─────────────────────────────────────────────────────────┘
```
**O-Ring Compression Guidelines:**
| Application | Compression % | Stretch % | Fill % |
|-------------|---------------|-----------|--------|
| Static face | 15-25 | 0-5 | 75-90 |
| Static radial | 12-20 | 1-5 | 75-85 |
| Dynamic (slow) | 10-16 | 2-5 | 70-85 |
| Dynamic (fast) | 8-14 | 2-5 | 70-80 |
| High pressure | 12-20 | 1-3 | 80-90 |
**Common O-Ring Materials:**
| Material | Temp Range | Fluid Compatibility | Application |
|----------|------------|---------------------|-------------|
| NBR (Nitrile) | -30 to +100°C | Mineral oils, petroleum | Standard damper |
| FKM (Viton) | -20 to +200°C | Most fluids, heat | High-temp, motorsport |
| HNBR | -30 to +150°C | Oils, improved heat | Performance road |
| EPDM | -50 to +150°C | NOT petroleum based | Synthetic fluids only |
| PTFE | -200 to +260°C | Universal | Special applications |
**Slyde Ring / Piston Seal Design:**
```
┌─────────────────────────────────────────────────────────┐
│ SLYDE RING CONFIGURATION │
├─────────────────────────────────────────────────────────┤
│ │
│ SINGLE SLYDE RING DUAL SLYDE + ENERGIZER │
│ ┌─────────────────┐ ┌─────────────────┐ │
│ │ │ ██████████ │ │ │ │ ████ ○ ████ │ │ │
│ │ │ ██████████ │ │ │ │ ████ ○ ████ │ │ │
│ │ │ ←PTFE/Bronze│ │ │ │ PTFE O-ring│ │ │
│ │ │ │ │ │ │ ↑ │ │ │
│ │ └────────────┘ │ │ │ Energizer │ │ │
│ │ Tube wall │ │ └─────────────┘ │ │
│ └─────────────────┘ └─────────────────┘ │
│ │
│ Low friction Better sealing at │
│ Self-lubricating low pressure │
│ │
└─────────────────────────────────────────────────────────┘
```
**Slyde Ring Materials:**
| Material | Friction | Wear | Pressure | Application |
|----------|----------|------|----------|-------------|
| PTFE | Very low | Moderate | Low-med | Standard |
| PTFE + Bronze | Low | Good | Medium | General |
| PTFE + Carbon | Low | Very good | Med-high | High duty |
| PEEK | Low | Excellent | High | Motorsport |
## Application Requirements Capture
### Customer Questionnaire
```markdown
## Damper Application Requirements
### 1. Vehicle Information
- Vehicle type: [Road car / Race car / Off-road / Industrial]
- Make/Model:
- Year:
- Suspension type: [MacPherson / Double wishbone / Multi-link / Solid axle]
- Existing damper (if replacing): [Make/Model/P/N]
### 2. Weight & Load
- Sprung mass per corner (kg):
- Unsprung mass per corner (kg):
- Weight distribution F/R (%):
- Max payload (kg):
### 3. Geometry
- Wheel travel (mm): Bump: ___ Droop: ___
- Motion ratio:
- Damper length (mm): Extended: ___ Compressed: ___
- Stroke (mm):
- Mounting: Top: [Type] Bottom: [Type]
### 4. Performance Requirements
- Primary use: [Comfort / Sport / Race / Off-road]
- Max damper velocity (m/s):
- Operating temperature range (°C):
- Environment: [Road / Track / Desert / Mud/water]
### 5. Damping Targets (if known)
- Rebound @ 0.3 m/s (N):
- Compression @ 0.3 m/s (N):
- Force ratio (C/R):
- Low-speed character: [Linear / Digressive]
- High-speed character: [Linear / Progressive]
### 6. Durability
- Expected life (km or hours):
- Service interval:
- Rebuild capability required: [Yes / No]
### 7. Constraints
- Max diameter (mm):
- Max weight (g):
- Budget range:
- Certification requirements:
```
### Damping Curve Design Process
```
┌─────────────────────────────────────────────────────────┐
│ DAMPING CURVE DESIGN PROCESS │
├─────────────────────────────────────────────────────────┤
│ │
│ 1. VEHICLE DYNAMICS INPUT │
│ ├── Sprung/unsprung mass │
│ ├── Spring rate │
│ └── Target ride frequency │
│ │ │
│ ▼ │
│ 2. CRITICAL DAMPING CALCULATION │
│ Cc = 2 × √(k × m) │
│ │ │
│ ▼ │
│ 3. DAMPING RATIO SELECTION │
│ ├── Comfort: ζ = 0.2-0.3 │
│ ├── Sport: ζ = 0.3-0.5 │
│ └── Race: ζ = 0.5-0.8 │
│ │ │
│ ▼ │
│ 4. FORCE TARGET CALCULATION │
│ C = ζ × Cc (damping coefficient) │
│ F @ 0.3 m/s = C × 0.3 │
│ │ │
│ ▼ │
│ 5. CURVE SHAPE DESIGN │
│ ├── Digressive: Low-speed comfort │
│ ├── Linear: Predictable │
│ └── Progressive: High-speed control │
│ │ │
│ ▼ │
│ 6. VALVE SPECIFICATION │
│ └── DSSV port window design │
│ │
└─────────────────────────────────────────────────────────┘
```
### Damping Ratio Guidelines
| Application | ζ Rebound | ζ Compression | Ratio C/R |
|-------------|-----------|---------------|-----------|
| Luxury road | 0.20-0.30 | 0.15-0.25 | 0.6-0.8 |
| Sport road | 0.30-0.45 | 0.20-0.35 | 0.5-0.7 |
| Track day | 0.40-0.60 | 0.30-0.45 | 0.5-0.7 |
| Race (aero) | 0.60-0.80 | 0.40-0.60 | 0.5-0.7 |
| Rally/off-road | 0.35-0.50 | 0.25-0.40 | 0.6-0.8 |
## DSSV Valve Selection
**Valve Sizing Matrix:**
| Damper OD | Valve OD | Port Area Range | Force Range @0.3m/s |
|-----------|----------|-----------------|---------------------|
| 36mm | 20mm | 8-20 mm² | 200-600 N |
| 46mm | 25mm | 15-35 mm² | 400-1200 N |
| 60mm | 32mm | 25-60 mm² | 800-2500 N |
**Port Window Shapes:**
| Shape | Curve | Application | Tuning Range |
|-------|-------|-------------|--------------|
| Rectangular | Linear | Baseline, predictable | Moderate |
| Tapered | Digressive | Comfort, ride quality | Wide |
| Progressive slots | Progressive | High-speed control | Moderate |
| Variable | Custom | Application-specific | Maximum |
## Integration with Other Skills
| Skill | Integration Point |
|-------|-------------------|
| **DamperAssembly** | Manufacturing handoff, assembly specs |
| **PlantCapability** | Machining feasibility check |
| **QuoteEstimator** | Cost estimation for custom designs |
| **CuttingParams** | Machining parameters for components |
| **MaterialSelection** | Cross-reference for specifications |
| **APQPPPAP** | Product development process |
## Examples
**Example 1: New customer application**
```
User: "Customer wants dampers for a lightweight track day car"
→ Run ApplicationCapture workflow
→ Gather vehicle data, geometry, performance targets
→ Calculate damping requirements
→ Specify DSSV valve configuration
→ Generate preliminary specification
```
**Example 2: Seal design query**
```
User: "What O-ring compression for a 20mm rod dynamic seal?"
→ Reference seal design tables
→ Recommend 10-14% compression for dynamic
→ Specify groove dimensions
→ Recommend NBR or FKM material
→ Note lubrication requirements
```
**Example 3: Material selection**
```
User: "Need a lightweight piston rod material"
→ Review load requirements
→ Consider 17-4 PH stainless (high strength-to-weight)
→ Or 4340 with DLC coating
→ Check fatigue requirements
→ Provide specification
```
This skill provides hydraulic damper design and application engineering for customer-specific requirements. It captures application data, defines damping curves, selects DSSV valves, and specifies materials and seals. The output is a manufacturable damper specification tuned to performance, durability, and packaging constraints.
I guide structured capture of customer inputs (vehicle, masses, geometry, use case, constraints) then compute target damping coefficients and force targets. I convert targets into valve porting and DSSV sizing, select rod/tube materials and surface treatments, and define O-ring/slyde-ring sealing details. Deliverables include a damping curve, valve spec, material callouts, and a checklist for fatigue and assembly considerations.
What inputs are essential to generate an accurate damping curve?
Sprung/unsprung mass, motion ratio, spring rate, wheel travel, target use case, and max damper velocity.
How do you choose between aluminium and steel components?
Choose aluminium for weight-sensitive parts and moderate loads; choose steel or nitrided variants for high-load rods and fatigue-critical components.
Which seal materials fit typical damper fluids?
NBR for standard mineral oils, HNBR or FKM for higher temperature and performance fluids, PTFE where extreme compatibility is needed.