home / skills / prowler-cloud / prowler / ai-sdk-5
This skill helps you migrate to AI SDK 5 patterns and implement chat, streaming, and UIMessage structures for robust AI features.
npx playbooks add skill prowler-cloud/prowler --skill ai-sdk-5Review the files below or copy the command above to add this skill to your agents.
---
name: ai-sdk-5
description: >
Vercel AI SDK 5 patterns.
Trigger: When building AI features with AI SDK v5 (chat, streaming, tools/function calling, UIMessage parts), including migration from v4.
license: Apache-2.0
metadata:
author: prowler-cloud
version: "1.0"
scope: [root, ui]
auto_invoke: "Building AI chat features"
allowed-tools: Read, Edit, Write, Glob, Grep, Bash, WebFetch, WebSearch, Task
---
## Breaking Changes from AI SDK 4
```typescript
// ❌ AI SDK 4 (OLD)
import { useChat } from "ai";
const { messages, handleSubmit, input, handleInputChange } = useChat({
api: "/api/chat",
});
// ✅ AI SDK 5 (NEW)
import { useChat } from "@ai-sdk/react";
import { DefaultChatTransport } from "ai";
const { messages, sendMessage } = useChat({
transport: new DefaultChatTransport({ api: "/api/chat" }),
});
```
## Client Setup
```typescript
import { useChat } from "@ai-sdk/react";
import { DefaultChatTransport } from "ai";
import { useState } from "react";
export function Chat() {
const [input, setInput] = useState("");
const { messages, sendMessage, isLoading, error } = useChat({
transport: new DefaultChatTransport({ api: "/api/chat" }),
});
const handleSubmit = (e: React.FormEvent) => {
e.preventDefault();
if (!input.trim()) return;
sendMessage({ text: input });
setInput("");
};
return (
<div>
<div>
{messages.map((message) => (
<Message key={message.id} message={message} />
))}
</div>
<form onSubmit={handleSubmit}>
<input
value={input}
onChange={(e) => setInput(e.target.value)}
placeholder="Type a message..."
disabled={isLoading}
/>
<button type="submit" disabled={isLoading}>
Send
</button>
</form>
{error && <div>Error: {error.message}</div>}
</div>
);
}
```
## UIMessage Structure (v5)
```typescript
// ❌ Old: message.content was a string
// ✅ New: message.parts is an array
interface UIMessage {
id: string;
role: "user" | "assistant" | "system";
parts: MessagePart[];
}
type MessagePart =
| { type: "text"; text: string }
| { type: "image"; image: string }
| { type: "tool-call"; toolCallId: string; toolName: string; args: unknown }
| { type: "tool-result"; toolCallId: string; result: unknown };
// Extract text from parts
function getMessageText(message: UIMessage): string {
return message.parts
.filter((part): part is { type: "text"; text: string } => part.type === "text")
.map((part) => part.text)
.join("");
}
// Render message
function Message({ message }: { message: UIMessage }) {
return (
<div className={message.role === "user" ? "user" : "assistant"}>
{message.parts.map((part, index) => {
if (part.type === "text") {
return <p key={index}>{part.text}</p>;
}
if (part.type === "image") {
return <img key={index} src={part.image} alt="" />;
}
return null;
})}
</div>
);
}
```
## Server-Side (Route Handler)
```typescript
// app/api/chat/route.ts
import { openai } from "@ai-sdk/openai";
import { streamText } from "ai";
export async function POST(req: Request) {
const { messages } = await req.json();
const result = await streamText({
model: openai("gpt-4o"),
messages,
system: "You are a helpful assistant.",
});
return result.toDataStreamResponse();
}
```
## With LangChain
```typescript
// app/api/chat/route.ts
import { toUIMessageStream } from "@ai-sdk/langchain";
import { ChatOpenAI } from "@langchain/openai";
import { HumanMessage, AIMessage } from "@langchain/core/messages";
export async function POST(req: Request) {
const { messages } = await req.json();
const model = new ChatOpenAI({
modelName: "gpt-4o",
streaming: true,
});
// Convert UI messages to LangChain format
const langchainMessages = messages.map((m) => {
const text = m.parts
.filter((p) => p.type === "text")
.map((p) => p.text)
.join("");
return m.role === "user"
? new HumanMessage(text)
: new AIMessage(text);
});
const stream = await model.stream(langchainMessages);
return toUIMessageStream(stream).toDataStreamResponse();
}
```
## Streaming with Tools
```typescript
import { openai } from "@ai-sdk/openai";
import { streamText, tool } from "ai";
import { z } from "zod";
const result = await streamText({
model: openai("gpt-4o"),
messages,
tools: {
getWeather: tool({
description: "Get weather for a location",
parameters: z.object({
location: z.string().describe("City name"),
}),
execute: async ({ location }) => {
// Fetch weather data
return { temperature: 72, condition: "sunny" };
},
}),
},
});
```
## useCompletion (Text Generation)
```typescript
import { useCompletion } from "@ai-sdk/react";
import { DefaultCompletionTransport } from "ai";
const { completion, complete, isLoading } = useCompletion({
transport: new DefaultCompletionTransport({ api: "/api/complete" }),
});
// Trigger completion
await complete("Write a haiku about");
```
## Error Handling
```typescript
const { error, messages, sendMessage } = useChat({
transport: new DefaultChatTransport({ api: "/api/chat" }),
onError: (error) => {
console.error("Chat error:", error);
toast.error("Failed to send message");
},
});
// Display error
{error && (
<div className="error">
{error.message}
<button onClick={() => sendMessage({ text: lastInput })}>
Retry
</button>
</div>
)}
```
This skill documents practical patterns for building AI features with the Vercel AI SDK v5. It explains migration from v4, the new UIMessage parts model, client and server setup, streaming with tools, LangChain integration, and completion hooks. Follow these patterns to upgrade chat, streaming, and function-calling flows reliably.
It shows how the v5 client uses transports (DefaultChatTransport / DefaultCompletionTransport) and exposes hooks like useChat and useCompletion with sendMessage/complete semantics. Messages are now UIMessage objects with parts (text, image, tool-call, tool-result) instead of single content strings. Server routes stream responses using streamText or LangChain adapters and can register typed tools for streaming tool invocations.
How do I migrate messages from v4 to v5?
Convert message.content strings into message.parts arrays. Use text parts for plain text and join text parts when you need concatenated text for models or LangChain.
How are tool calls represented in messages?
Tool calls and results appear as parts with types 'tool-call' and 'tool-result' including a toolCallId, toolName, args, and the result object. Use these to correlate calls and incremental tool outputs.