home / skills / proffesor-for-testing / agentic-qe / v3-qe-agentic-flow-integration

This skill helps you accelerate QE with deep agentic-flow integration, enabling SONA learning, Flash Attention speedups, and RL-driven decision making.

npx playbooks add skill proffesor-for-testing/agentic-qe --skill v3-qe-agentic-flow-integration

Review the files below or copy the command above to add this skill to your agents.

Files (1)
SKILL.md
16.9 KB
---
name: "V3 QE Agentic-Flow Integration"
description: "Deep integration with agentic-flow@alpha for SONA learning, Flash Attention (2.49x-7.47x speedup), and 9 RL algorithms."
version: "3.0.0"
---

# V3 QE Agentic-Flow Integration

## Purpose

Guide deep integration with agentic-flow@alpha for QE operations, leveraging SONA (Self-Optimizing Neural Architecture), Flash Attention for speedups, and 9 reinforcement learning algorithms for intelligent QE decisions.

## Activation

- When implementing SONA learning for QE
- When optimizing QE with Flash Attention
- When using RL algorithms for QE decisions
- When reducing code duplication with agentic-flow
- When implementing cross-domain knowledge transfer

## Architecture

```
┌─────────────────────────────────────────────────────────────┐
│              V3 QE Agentic-Flow Integration                  │
├─────────────────────────────────────────────────────────────┤
│                                                              │
│  ┌─────────────────────────────────────────────────────┐    │
│  │                  SONA Layer                          │    │
│  │  • Self-optimizing neural routing                   │    │
│  │  • Pattern adaptation <0.05ms                       │    │
│  │  • Cross-domain knowledge transfer                  │    │
│  └─────────────────────────────────────────────────────┘    │
│                         │                                    │
│  ┌──────────────────────┼──────────────────────────────┐    │
│  │              Flash Attention Layer                   │    │
│  │  • 2.49x-7.47x speedup                              │    │
│  │  • Memory-efficient attention                       │    │
│  │  • QE-optimized patterns                            │    │
│  └─────────────────────────────────────────────────────┘    │
│                         │                                    │
│  ┌──────────────────────┼──────────────────────────────┐    │
│  │             RL Algorithm Suite                       │    │
│  │  • Decision Transformer  • Q-Learning               │    │
│  │  • SARSA                 • Actor-Critic             │    │
│  │  • Policy Gradient       • DQN/PPO/A2C              │    │
│  └─────────────────────────────────────────────────────┘    │
│                                                              │
└─────────────────────────────────────────────────────────────┘
```

## Quick Start

```bash
# Enable SONA for QE
aqe-v3 sona enable --mode real-time --adaptation 0.05ms

# Enable Flash Attention
aqe-v3 flash-attention enable --backend wasm-simd

# Initialize RL algorithms
aqe-v3 rl init --algorithms decision-transformer,q-learning,ppo

# Check integration status
aqe-v3 agentic-flow status
```

## Agent Workflow

```typescript
// Initialize agentic-flow integration
Task("Enable SONA learning", `
  Initialize SONA for QE:
  - Configure real-time adaptation (<0.05ms)
  - Set up pattern storage
  - Enable cross-domain transfer
  - Connect to QE memory system
`, "v3-qe-learning-coordinator")

// Configure Flash Attention
Task("Optimize with Flash Attention", `
  Enable Flash Attention for QE workloads:
  - Configure test similarity patterns
  - Set up code embedding optimization
  - Enable defect pattern matching
  - Validate 2.49x-7.47x speedup
`, "v3-qe-performance-engineer")

// Initialize RL suite
Task("Configure RL algorithms", `
  Set up RL algorithms for QE decisions:
  - Decision Transformer for test prioritization
  - Q-Learning for coverage optimization
  - PPO for adaptive retry strategies
  - Connect to reward signals
`, "v3-qe-metrics-optimizer")
```

## SONA Integration

### 1. QE SONA Module

```typescript
// v3/src/integration/sona/QESONAModule.ts
import { SONAModule, PatternAdapter } from '@anthropic/agentic-flow';

export class QESONAModule extends SONAModule {
  readonly domains = [
    'test-generation',
    'coverage-analysis',
    'defect-intelligence',
    'quality-assessment',
    'learning-optimization'
  ];

  private readonly patternStore: QEPatternStore;

  constructor(config: QESONAConfig) {
    super({
      adaptationTimeMs: config.adaptationTimeMs || 0.05,
      mode: config.mode || 'real-time'
    });

    this.patternStore = new QEPatternStore(config.memoryProvider);
  }

  // Adapt patterns for QE domain
  async adaptPattern(pattern: QEPattern): Promise<void> {
    await super.adaptPattern(pattern);

    // QE-specific adaptations
    switch (pattern.domain) {
      case 'test-generation':
        await this.adaptTestPattern(pattern);
        break;
      case 'defect-intelligence':
        await this.adaptDefectPattern(pattern);
        break;
      case 'coverage-analysis':
        await this.adaptCoveragePattern(pattern);
        break;
    }
  }

  private async adaptTestPattern(pattern: QEPattern): Promise<void> {
    // Learn test generation patterns
    const testPatterns = await this.extractTestPatterns(pattern);
    await this.patternStore.store('test-patterns', testPatterns);

    // Update test generation model
    await this.updateModel('test-generator', testPatterns);
  }

  private async adaptDefectPattern(pattern: QEPattern): Promise<void> {
    // Learn defect prediction patterns
    const defectPatterns = await this.extractDefectPatterns(pattern);
    await this.patternStore.store('defect-patterns', defectPatterns);

    // Update defect prediction model
    await this.updateModel('defect-predictor', defectPatterns);
  }

  // Cross-domain knowledge transfer
  async transferKnowledge(
    sourceDomain: string,
    targetDomain: string
  ): Promise<TransferResult> {
    const sourcePatterns = await this.patternStore.get(sourceDomain);

    // Adapt patterns for target domain
    const adaptedPatterns = await this.adaptForDomain(
      sourcePatterns,
      targetDomain
    );

    // Store in target domain
    await this.patternStore.store(targetDomain, adaptedPatterns);

    return {
      transferred: adaptedPatterns.length,
      accuracy: await this.validateTransfer(adaptedPatterns, targetDomain)
    };
  }
}
```

### 2. Flash Attention for QE

```typescript
// v3/src/integration/attention/QEFlashAttention.ts
import { FlashAttention, AttentionConfig } from '@anthropic/agentic-flow';

export class QEFlashAttention extends FlashAttention {
  private readonly qePatterns: Map<string, AttentionPattern>;

  constructor(config: QEFlashAttentionConfig) {
    super({
      backend: config.backend || 'wasm-simd',
      blockSize: 64,
      numBlocks: 128
    });

    this.qePatterns = this.initializeQEPatterns();
  }

  private initializeQEPatterns(): Map<string, AttentionPattern> {
    return new Map([
      ['test-similarity', {
        headsPerBlock: 8,
        queryChunkSize: 512,
        useCase: 'Finding similar test cases'
      }],
      ['code-embedding', {
        headsPerBlock: 4,
        queryChunkSize: 1024,
        useCase: 'Code semantic analysis'
      }],
      ['defect-matching', {
        headsPerBlock: 12,
        queryChunkSize: 256,
        useCase: 'Matching defect patterns'
      }],
      ['coverage-gap', {
        headsPerBlock: 6,
        queryChunkSize: 512,
        useCase: 'Identifying coverage gaps'
      }]
    ]);
  }

  // Optimize attention for QE workload
  async computeQEAttention(
    query: Float32Array,
    keys: Float32Array[],
    pattern: string
  ): Promise<AttentionResult> {
    const config = this.qePatterns.get(pattern);
    if (!config) {
      throw new Error(`Unknown QE attention pattern: ${pattern}`);
    }

    // Apply Flash Attention with QE-specific config
    return await this.compute(query, keys, {
      headsPerBlock: config.headsPerBlock,
      queryChunkSize: config.queryChunkSize
    });
  }

  // Batch compute for multiple queries (parallelized)
  async batchComputeQE(
    queries: Float32Array[],
    keys: Float32Array[],
    pattern: string
  ): Promise<AttentionResult[]> {
    const config = this.qePatterns.get(pattern);

    return await Promise.all(
      queries.map(query =>
        this.compute(query, keys, {
          headsPerBlock: config.headsPerBlock,
          queryChunkSize: config.queryChunkSize
        })
      )
    );
  }

  // Get performance metrics
  getPerformanceMetrics(): FlashAttentionMetrics {
    return {
      speedup: this.calculateSpeedup(), // 2.49x-7.47x
      memoryReduction: this.calculateMemoryReduction(),
      throughput: this.calculateThroughput()
    };
  }
}
```

### 3. RL Algorithm Suite

```typescript
// v3/src/integration/rl/QERLSuite.ts
import {
  DecisionTransformer,
  QLearning,
  SARSA,
  ActorCritic,
  PolicyGradient,
  DQN,
  PPO,
  A2C
} from '@anthropic/agentic-flow/rl';

export class QERLSuite {
  private readonly algorithms: Map<string, RLAlgorithm>;
  private readonly rewardSignals: QERewardSignals;

  constructor(config: QERLConfig) {
    this.algorithms = this.initializeAlgorithms(config.algorithms);
    this.rewardSignals = new QERewardSignals(config.rewards);
  }

  private initializeAlgorithms(algorithms: string[]): Map<string, RLAlgorithm> {
    const map = new Map();

    const implementations: Record<string, () => RLAlgorithm> = {
      'decision-transformer': () => new DecisionTransformer({
        contextLength: 1024,
        numLayers: 6,
        numHeads: 8
      }),
      'q-learning': () => new QLearning({
        learningRate: 0.01,
        discountFactor: 0.99,
        epsilon: 0.1
      }),
      'sarsa': () => new SARSA({
        learningRate: 0.01,
        discountFactor: 0.99,
        epsilon: 0.1
      }),
      'actor-critic': () => new ActorCritic({
        actorLearningRate: 0.001,
        criticLearningRate: 0.01
      }),
      'policy-gradient': () => new PolicyGradient({
        learningRate: 0.001,
        baseline: true
      }),
      'dqn': () => new DQN({
        learningRate: 0.001,
        batchSize: 32,
        targetUpdateFreq: 100
      }),
      'ppo': () => new PPO({
        learningRate: 0.0003,
        clipRatio: 0.2,
        epochs: 10
      }),
      'a2c': () => new A2C({
        learningRate: 0.001,
        entropyCoef: 0.01
      })
    };

    for (const name of algorithms) {
      if (implementations[name]) {
        map.set(name, implementations[name]());
      }
    }

    return map;
  }

  // QE-specific RL applications
  async prioritizeTests(
    tests: TestCase[],
    context: ExecutionContext
  ): Promise<TestCase[]> {
    const transformer = this.algorithms.get('decision-transformer');
    if (!transformer) throw new Error('Decision Transformer not initialized');

    const priorities = await transformer.predict(
      this.encodeTestContext(tests, context)
    );

    return tests
      .map((test, i) => ({ test, priority: priorities[i] }))
      .sort((a, b) => b.priority - a.priority)
      .map(item => item.test);
  }

  async optimizeCoveragePath(
    currentCoverage: CoverageReport,
    targetFiles: string[]
  ): Promise<CoveragePath> {
    const qLearning = this.algorithms.get('q-learning');
    if (!qLearning) throw new Error('Q-Learning not initialized');

    const state = this.encodeCoverageState(currentCoverage);
    const actions = await qLearning.selectActions(state, targetFiles.length);

    return {
      order: this.decodeCoveragePath(actions, targetFiles),
      expectedCoverage: this.estimateCoverage(actions, currentCoverage)
    };
  }

  async tuneQualityThresholds(
    metrics: QualityMetrics,
    history: QualityHistory
  ): Promise<Thresholds> {
    const actorCritic = this.algorithms.get('actor-critic');
    if (!actorCritic) throw new Error('Actor-Critic not initialized');

    const action = await actorCritic.selectAction(
      this.encodeQualityState(metrics, history)
    );

    return this.decodeThresholds(action);
  }

  async optimizeRetryStrategy(
    failedTests: FailedTest[],
    resourceConstraints: ResourceConstraints
  ): Promise<RetryStrategy> {
    const ppo = this.algorithms.get('ppo');
    if (!ppo) throw new Error('PPO not initialized');

    const action = await ppo.selectAction(
      this.encodeRetryState(failedTests, resourceConstraints)
    );

    return this.decodeRetryStrategy(action);
  }

  // Train from QE feedback
  async train(experience: QEExperience): Promise<void> {
    const reward = this.rewardSignals.calculate(experience);

    for (const [name, algorithm] of this.algorithms) {
      await algorithm.update({
        state: experience.state,
        action: experience.action,
        reward,
        nextState: experience.nextState,
        done: experience.done
      });
    }
  }
}
```

## QE-Specific RL Applications

| Algorithm | QE Application | Domain |
|-----------|----------------|--------|
| Decision Transformer | Test case prioritization | test-execution |
| Q-Learning | Coverage path optimization | coverage-analysis |
| SARSA | Defect prediction sequencing | defect-intelligence |
| Actor-Critic | Quality gate threshold tuning | quality-assessment |
| Policy Gradient | Resource allocation | coordination |
| DQN | Parallel execution scheduling | test-execution |
| PPO | Adaptive retry strategies | test-execution |
| A2C | Fleet coordination | coordination |

## Performance Targets

| Metric | Current | Target | Via |
|--------|---------|--------|-----|
| Test embedding | ~50ms | <15ms | Flash Attention |
| Pattern adaptation | ~2ms | <0.05ms | SONA |
| Coverage search | ~100ms | <1ms | HNSW + Flash |
| RL decision | ~150ms | <20ms | Optimized models |
| Memory usage | ~200MB | ~80MB | Shared modules |

## Flash Attention Configuration

```typescript
const QE_FLASH_ATTENTION_CONFIG = {
  // Memory-efficient attention for large test suites
  blockSize: 64,
  numBlocks: 128,

  // QE workload patterns
  patterns: {
    testSimilarity: {
      headsPerBlock: 8,
      queryChunkSize: 512
    },
    codeEmbedding: {
      headsPerBlock: 4,
      queryChunkSize: 1024
    },
    defectMatching: {
      headsPerBlock: 12,
      queryChunkSize: 256
    }
  },

  // Backend configuration
  backend: 'wasm-simd', // or 'native', 'webgpu'

  // Performance targets
  targets: {
    speedup: '2.49x-7.47x',
    memoryReduction: '50%'
  }
};
```

## CLI Commands

```bash
# SONA operations
aqe-v3 sona enable --mode real-time
aqe-v3 sona status
aqe-v3 sona adapt --pattern test-generation
aqe-v3 sona transfer --from defect-patterns --to test-generation

# Flash Attention
aqe-v3 flash-attention enable --backend wasm-simd
aqe-v3 flash-attention status
aqe-v3 flash-attention benchmark
aqe-v3 flash-attention configure --pattern test-similarity

# RL Suite
aqe-v3 rl init --algorithms decision-transformer,q-learning,ppo
aqe-v3 rl status
aqe-v3 rl train --experience ./experiences/
aqe-v3 rl predict --algorithm decision-transformer --input tests.json

# Integration status
aqe-v3 agentic-flow status
aqe-v3 agentic-flow sync
aqe-v3 agentic-flow benchmark
```

## Shared Utilities

```typescript
// Shared between QE and claude-flow
const sharedUtils = {
  vectorOps: '@agentic-flow/vectors',
  embeddingCache: '@agentic-flow/embeddings',
  hnswIndex: '@agentic-flow/hnsw'
};

// QE-specific extensions
const qeExtensions = {
  testEmbeddings: './embeddings/test-embedding',
  coverageVectors: './embeddings/coverage-vectors',
  defectPatterns: './embeddings/defect-patterns'
};
```

## Implementation Checklist

- [ ] Implement QESONAModule extending base SONA
- [ ] Configure Flash Attention for QE patterns
- [ ] Initialize RL algorithm suite
- [ ] Create test prioritization with Decision Transformer
- [ ] Implement coverage optimization with Q-Learning
- [ ] Add quality threshold tuning with Actor-Critic
- [ ] Build retry strategy optimization with PPO
- [ ] Set up training from QE feedback
- [ ] Write performance benchmarks
- [ ] Add CLI commands

## Related Skills

- v3-qe-learning-optimization - Transfer learning
- v3-qe-memory-unification - SONA pattern storage
- v3-integration-deep (claude-flow) - Reference implementation

## Related ADRs

- ADR-040: V3 QE Agentic-Flow Deep Integration
- ADR-038: V3 QE Memory Unification

Overview

This skill integrates agentic-flow@alpha into a QE platform to enable SONA-driven learning, Flash Attention speedups, and a suite of nine RL algorithms for automated quality decisions. It targets test generation, coverage analysis, defect intelligence, and adaptive runtime QA optimizations. Use it to reduce latency, improve pattern adaptation, and make reinforcement-learning-driven test decisions.

How this skill works

The integration exposes a SONA layer that learns and transfers QE patterns in real time, a Flash Attention layer optimized for QE workloads to accelerate embeddings and similarity searches, and an RL suite that runs decision transformer, Q-Learning, PPO and other algorithms for prioritization and strategy tuning. Modules provide APIs to adapt patterns, compute attention with QE-specific configs, and train RL algorithms from QE feedback and reward signals. CLI helpers and TypeScript agent tasks wire these components into CI/CD or test orchestration flows.

When to use it

  • Implement SONA for real-time test-pattern adaptation and cross-domain transfer
  • Accelerate test similarity, code embeddings, or defect matching with Flash Attention
  • Prioritize tests, optimize coverage paths, or tune retry strategies using RL
  • Reduce code duplication by reusing agentic-flow patterns and memory providers
  • Lower latency for embedding and decision tasks in large test fleets

Best practices

  • Start with domain-specific pattern stores (test-generation, defect-intelligence, coverage-analysis) to bootstrap SONA
  • Profile attention patterns (test-similarity, code-embedding) and pick appropriate queryChunkSize and headsPerBlock
  • Define clear reward signals and observability for each RL algorithm before online training
  • Use wasm-simd or native backends for predictable speedups and validate throughput metrics
  • Stage changes behind feature flags and test transfers on small domains before fleet-wide rollout

Example use cases

  • Real-time test prioritization using Decision Transformer to reduce CI feedback time
  • Coverage path optimization with Q-Learning to reach target files with fewer runs
  • Adaptive retry and backoff strategies powered by PPO to improve flaky test handling
  • Flash Attention for fast code-embedding lookups when matching past failures to new code changes
  • SONA-driven cross-domain transfer to reuse defect patterns between services

FAQ

What speedups can I expect from Flash Attention?

Typical speedups range from 2.49x to 7.47x depending on backend and workload; measure with your workload and chosen backend (wasm-simd, native, webgpu).

Which RL algorithm should I start with for test prioritization?

Begin with the Decision Transformer for context-aware prioritization, then add Q-Learning or PPO for coverage and retry strategies as needed.

How do I validate cross-domain transfers from SONA?

Validate by measuring transferred pattern accuracy on a held-out target domain and run transfer in a staging environment before production.