home / skills / proffesor-for-testing / agentic-qe / v3-memory-unification
/v2/docs/internal/archived-v3-development-skills/v3-memory-unification
This skill unifies multiple memory systems into AgentDB with HNSW indexing, enabling ultra-fast semantic search and cross-agent memory sharing.
npx playbooks add skill proffesor-for-testing/agentic-qe --skill v3-memory-unificationReview the files below or copy the command above to add this skill to your agents.
---
name: "V3 Memory Unification"
description: "Unify 6+ memory systems into AgentDB with HNSW indexing for 150x-12,500x search improvements. Implements ADR-006 (Unified Memory Service) and ADR-009 (Hybrid Memory Backend)."
---
# V3 Memory Unification
## What This Skill Does
Consolidates disparate memory systems into unified AgentDB backend with HNSW vector search, achieving 150x-12,500x search performance improvements while maintaining backward compatibility.
## Quick Start
```bash
# Initialize memory unification
Task("Memory architecture", "Design AgentDB unification strategy", "v3-memory-specialist")
# AgentDB integration
Task("AgentDB setup", "Configure HNSW indexing and vector search", "v3-memory-specialist")
# Data migration
Task("Memory migration", "Migrate SQLite/Markdown to AgentDB", "v3-memory-specialist")
```
## Systems to Unify
### Legacy Systems → AgentDB
```
┌─────────────────────────────────────────┐
│ • MemoryManager (basic operations) │
│ • DistributedMemorySystem (clustering) │
│ • SwarmMemory (agent-specific) │
│ • AdvancedMemoryManager (features) │
│ • SQLiteBackend (structured) │
│ • MarkdownBackend (file-based) │
│ • HybridBackend (combination) │
└─────────────────────────────────────────┘
↓
┌─────────────────────────────────────────┐
│ 🚀 AgentDB with HNSW │
│ • 150x-12,500x faster search │
│ • Unified query interface │
│ • Cross-agent memory sharing │
│ • SONA learning integration │
└─────────────────────────────────────────┘
```
## Implementation Architecture
### Unified Memory Service
```typescript
class UnifiedMemoryService implements IMemoryBackend {
constructor(
private agentdb: AgentDBAdapter,
private indexer: HNSWIndexer,
private migrator: DataMigrator
) {}
async store(entry: MemoryEntry): Promise<void> {
await this.agentdb.store(entry);
await this.indexer.index(entry);
}
async query(query: MemoryQuery): Promise<MemoryEntry[]> {
if (query.semantic) {
return this.indexer.search(query); // 150x-12,500x faster
}
return this.agentdb.query(query);
}
}
```
### HNSW Vector Search
```typescript
class HNSWIndexer {
constructor(dimensions: number = 1536) {
this.index = new HNSWIndex({
dimensions,
efConstruction: 200,
M: 16,
speedupTarget: '150x-12500x'
});
}
async search(query: MemoryQuery): Promise<MemoryEntry[]> {
const embedding = await this.embedContent(query.content);
const results = this.index.search(embedding, query.limit || 10);
return this.retrieveEntries(results);
}
}
```
## Migration Strategy
### Phase 1: Foundation
```typescript
// AgentDB adapter setup
const agentdb = new AgentDBAdapter({
dimensions: 1536,
indexType: 'HNSW',
speedupTarget: '150x-12500x'
});
```
### Phase 2: Data Migration
```typescript
// SQLite → AgentDB
const migrateFromSQLite = async () => {
const entries = await sqlite.getAll();
for (const entry of entries) {
const embedding = await generateEmbedding(entry.content);
await agentdb.store({ ...entry, embedding });
}
};
// Markdown → AgentDB
const migrateFromMarkdown = async () => {
const files = await glob('**/*.md');
for (const file of files) {
const content = await fs.readFile(file, 'utf-8');
await agentdb.store({
id: generateId(),
content,
embedding: await generateEmbedding(content),
metadata: { originalFile: file }
});
}
};
```
## SONA Integration
### Learning Pattern Storage
```typescript
class SONAMemoryIntegration {
async storePattern(pattern: LearningPattern): Promise<void> {
await this.memory.store({
id: pattern.id,
content: pattern.data,
metadata: {
sonaMode: pattern.mode,
reward: pattern.reward,
adaptationTime: pattern.adaptationTime
},
embedding: await this.generateEmbedding(pattern.data)
});
}
async retrieveSimilarPatterns(query: string): Promise<LearningPattern[]> {
return this.memory.query({
type: 'semantic',
content: query,
filters: { type: 'learning_pattern' }
});
}
}
```
## Performance Targets
- **Search Speed**: 150x-12,500x improvement via HNSW
- **Memory Usage**: 50-75% reduction through optimization
- **Query Latency**: <100ms for 1M+ entries
- **Cross-Agent Sharing**: Real-time memory synchronization
- **SONA Integration**: <0.05ms adaptation time
## Success Metrics
- [ ] All 7 legacy memory systems migrated to AgentDB
- [ ] 150x-12,500x search performance validated
- [ ] 50-75% memory usage reduction achieved
- [ ] Backward compatibility maintained
- [ ] SONA learning patterns integrated
- [ ] Cross-agent memory sharing operationalThis skill unifies six-plus legacy memory systems into a single AgentDB backend with HNSW vector indexing, delivering 150x–12,500x search improvements while preserving backward compatibility. It consolidates file-based, SQL, distributed and agent-specific memories into a unified query interface and enables cross-agent sharing and SONA learning pattern integration. The implementation is TypeScript-friendly and designed for incremental migration and real-time operations.
A Unified Memory Service wraps an AgentDB adapter, an HNSW indexer, and a migrator. Writes store entries in AgentDB and concurrently index embeddings in HNSW for fast semantic search. Queries route to HNSW for semantic searches and to AgentDB for structured lookups, keeping behavior consistent with legacy systems. Migration utilities transform SQLite, Markdown, and hybrid backends into AgentDB entries with generated embeddings.
How are semantic vs structured queries handled?
Semantic queries are routed to the HNSW indexer using embeddings; structured or filter-based queries use AgentDB's query API to preserve exact-match behavior.
Can migration be rolled back if issues appear?
Yes. Perform migrations in phases and keep source systems readable until validation completes; treat AgentDB as the new primary only after verification.