home / skills / proffesor-for-testing / agentic-qe / v3-cli-modernization

This skill modernizes claude-flow v3 CLI with interactive prompts, modular commands, enhanced hooks, and automated workflows for faster, reliable tooling.

npx playbooks add skill proffesor-for-testing/agentic-qe --skill v3-cli-modernization

Review the files below or copy the command above to add this skill to your agents.

Files (1)
SKILL.md
25.1 KB
---
name: "V3 CLI Modernization"
description: "CLI modernization and hooks system enhancement for claude-flow v3. Implements interactive prompts, command decomposition, enhanced hooks integration, and intelligent workflow automation."
---

# V3 CLI Modernization

## What This Skill Does

Modernizes claude-flow v3 CLI with interactive prompts, intelligent command decomposition, enhanced hooks integration, performance optimization, and comprehensive workflow automation capabilities.

## Quick Start

```bash
# Initialize CLI modernization analysis
Task("CLI architecture", "Analyze current CLI structure and identify optimization opportunities", "cli-hooks-developer")

# Modernization implementation (parallel)
Task("Command decomposition", "Break down large CLI files into focused modules", "cli-hooks-developer")
Task("Interactive prompts", "Implement intelligent interactive CLI experience", "cli-hooks-developer")
Task("Hooks enhancement", "Deep integrate hooks with CLI lifecycle", "cli-hooks-developer")
```

## CLI Architecture Modernization

### Current State Analysis
```
Current CLI Issues:
├── index.ts: 108KB monolithic file
├── enterprise.ts: 68KB feature module
├── Limited interactivity: Basic command parsing
├── Hooks integration: Basic pre/post execution
└── No intelligent workflows: Manual command chaining

Target Architecture:
├── Modular Commands: <500 lines per command
├── Interactive Prompts: Smart context-aware UX
├── Enhanced Hooks: Deep lifecycle integration
├── Workflow Automation: Intelligent command orchestration
└── Performance: <200ms command response time
```

### Modular Command Architecture
```typescript
// src/cli/core/command-registry.ts
interface CommandModule {
  name: string;
  description: string;
  category: CommandCategory;
  handler: CommandHandler;
  middleware: MiddlewareStack;
  permissions: Permission[];
  examples: CommandExample[];
}

export class ModularCommandRegistry {
  private commands = new Map<string, CommandModule>();
  private categories = new Map<CommandCategory, CommandModule[]>();
  private aliases = new Map<string, string>();

  registerCommand(command: CommandModule): void {
    this.commands.set(command.name, command);

    // Register in category index
    if (!this.categories.has(command.category)) {
      this.categories.set(command.category, []);
    }
    this.categories.get(command.category)!.push(command);
  }

  async executeCommand(name: string, args: string[]): Promise<CommandResult> {
    const command = this.resolveCommand(name);
    if (!command) {
      throw new CommandNotFoundError(name, this.getSuggestions(name));
    }

    // Execute middleware stack
    const context = await this.buildExecutionContext(command, args);
    const result = await command.middleware.execute(context);

    return result;
  }

  private resolveCommand(name: string): CommandModule | undefined {
    // Try exact match first
    if (this.commands.has(name)) {
      return this.commands.get(name);
    }

    // Try alias
    const aliasTarget = this.aliases.get(name);
    if (aliasTarget) {
      return this.commands.get(aliasTarget);
    }

    // Try fuzzy match
    return this.findFuzzyMatch(name);
  }
}
```

## Command Decomposition Strategy

### Swarm Commands Module
```typescript
// src/cli/commands/swarm/swarm.command.ts
@Command({
  name: 'swarm',
  description: 'Swarm coordination and management',
  category: 'orchestration'
})
export class SwarmCommand {
  constructor(
    private swarmCoordinator: UnifiedSwarmCoordinator,
    private promptService: InteractivePromptService
  ) {}

  @SubCommand('init')
  @Option('--topology', 'Swarm topology (mesh|hierarchical|adaptive)', 'hierarchical')
  @Option('--agents', 'Number of agents to spawn', 5)
  @Option('--interactive', 'Interactive agent configuration', false)
  async init(
    @Arg('projectName') projectName: string,
    options: SwarmInitOptions
  ): Promise<CommandResult> {

    if (options.interactive) {
      return this.interactiveSwarmInit(projectName);
    }

    return this.quickSwarmInit(projectName, options);
  }

  private async interactiveSwarmInit(projectName: string): Promise<CommandResult> {
    console.log(`🚀 Initializing Swarm for ${projectName}`);

    // Interactive topology selection
    const topology = await this.promptService.select({
      message: 'Select swarm topology:',
      choices: [
        { name: 'Hierarchical (Queen-led coordination)', value: 'hierarchical' },
        { name: 'Mesh (Peer-to-peer collaboration)', value: 'mesh' },
        { name: 'Adaptive (Dynamic topology switching)', value: 'adaptive' }
      ]
    });

    // Agent configuration
    const agents = await this.promptAgentConfiguration();

    // Initialize with configuration
    const swarm = await this.swarmCoordinator.initialize({
      name: projectName,
      topology,
      agents,
      hooks: {
        onAgentSpawn: this.handleAgentSpawn.bind(this),
        onTaskComplete: this.handleTaskComplete.bind(this),
        onSwarmComplete: this.handleSwarmComplete.bind(this)
      }
    });

    return CommandResult.success({
      message: `✅ Swarm ${projectName} initialized with ${agents.length} agents`,
      data: { swarmId: swarm.id, topology, agentCount: agents.length }
    });
  }

  @SubCommand('status')
  async status(): Promise<CommandResult> {
    const swarms = await this.swarmCoordinator.listActiveSwarms();

    if (swarms.length === 0) {
      return CommandResult.info('No active swarms found');
    }

    // Interactive swarm selection if multiple
    const selectedSwarm = swarms.length === 1
      ? swarms[0]
      : await this.promptService.select({
          message: 'Select swarm to inspect:',
          choices: swarms.map(s => ({
            name: `${s.name} (${s.agents.length} agents, ${s.topology})`,
            value: s
          }))
        });

    return this.displaySwarmStatus(selectedSwarm);
  }
}
```

### Learning Commands Module
```typescript
// src/cli/commands/learning/learning.command.ts
@Command({
  name: 'learning',
  description: 'Learning system management and optimization',
  category: 'intelligence'
})
export class LearningCommand {
  constructor(
    private learningService: IntegratedLearningService,
    private promptService: InteractivePromptService
  ) {}

  @SubCommand('start')
  @Option('--algorithm', 'RL algorithm to use', 'auto')
  @Option('--tier', 'Learning tier (basic|standard|advanced)', 'standard')
  async start(options: LearningStartOptions): Promise<CommandResult> {
    // Auto-detect optimal algorithm if not specified
    if (options.algorithm === 'auto') {
      const taskContext = await this.analyzeCurrentContext();
      options.algorithm = this.learningService.selectOptimalAlgorithm(taskContext);

      console.log(`🧠 Auto-selected ${options.algorithm} algorithm based on context`);
    }

    const session = await this.learningService.startSession({
      algorithm: options.algorithm,
      tier: options.tier,
      userId: await this.getCurrentUser()
    });

    return CommandResult.success({
      message: `🚀 Learning session started with ${options.algorithm}`,
      data: { sessionId: session.id, algorithm: options.algorithm, tier: options.tier }
    });
  }

  @SubCommand('feedback')
  @Arg('reward', 'Reward value (0-1)', 'number')
  async feedback(
    @Arg('reward') reward: number,
    @Option('--context', 'Additional context for learning')
    context?: string
  ): Promise<CommandResult> {
    const activeSession = await this.learningService.getActiveSession();
    if (!activeSession) {
      return CommandResult.error('No active learning session found. Start one with `learning start`');
    }

    await this.learningService.submitFeedback({
      sessionId: activeSession.id,
      reward,
      context,
      timestamp: new Date()
    });

    return CommandResult.success({
      message: `📊 Feedback recorded (reward: ${reward})`,
      data: { reward, sessionId: activeSession.id }
    });
  }

  @SubCommand('metrics')
  async metrics(): Promise<CommandResult> {
    const metrics = await this.learningService.getMetrics();

    // Interactive metrics display
    await this.displayInteractiveMetrics(metrics);

    return CommandResult.success('Metrics displayed');
  }
}
```

## Interactive Prompt System

### Advanced Prompt Service
```typescript
// src/cli/services/interactive-prompt.service.ts
interface PromptOptions {
  message: string;
  type: 'select' | 'multiselect' | 'input' | 'confirm' | 'progress';
  choices?: PromptChoice[];
  default?: any;
  validate?: (input: any) => boolean | string;
  transform?: (input: any) => any;
}

export class InteractivePromptService {
  private inquirer: any; // Dynamic import for tree-shaking

  async select<T>(options: SelectPromptOptions<T>): Promise<T> {
    const { default: inquirer } = await import('inquirer');

    const result = await inquirer.prompt([{
      type: 'list',
      name: 'selection',
      message: options.message,
      choices: options.choices,
      default: options.default
    }]);

    return result.selection;
  }

  async multiSelect<T>(options: MultiSelectPromptOptions<T>): Promise<T[]> {
    const { default: inquirer } = await import('inquirer');

    const result = await inquirer.prompt([{
      type: 'checkbox',
      name: 'selections',
      message: options.message,
      choices: options.choices,
      validate: (input: T[]) => {
        if (options.minSelections && input.length < options.minSelections) {
          return `Please select at least ${options.minSelections} options`;
        }
        if (options.maxSelections && input.length > options.maxSelections) {
          return `Please select at most ${options.maxSelections} options`;
        }
        return true;
      }
    }]);

    return result.selections;
  }

  async input(options: InputPromptOptions): Promise<string> {
    const { default: inquirer } = await import('inquirer');

    const result = await inquirer.prompt([{
      type: 'input',
      name: 'input',
      message: options.message,
      default: options.default,
      validate: options.validate,
      transformer: options.transform
    }]);

    return result.input;
  }

  async progressTask<T>(
    task: ProgressTask<T>,
    options: ProgressOptions
  ): Promise<T> {
    const { default: cliProgress } = await import('cli-progress');

    const progressBar = new cliProgress.SingleBar({
      format: `${options.title} |{bar}| {percentage}% | {status}`,
      barCompleteChar: '█',
      barIncompleteChar: '░',
      hideCursor: true
    });

    progressBar.start(100, 0, { status: 'Starting...' });

    try {
      const result = await task({
        updateProgress: (percent: number, status?: string) => {
          progressBar.update(percent, { status: status || 'Processing...' });
        }
      });

      progressBar.update(100, { status: 'Complete!' });
      progressBar.stop();

      return result;
    } catch (error) {
      progressBar.stop();
      throw error;
    }
  }

  async confirmWithDetails(
    message: string,
    details: ConfirmationDetails
  ): Promise<boolean> {
    console.log('\n' + chalk.bold(message));
    console.log(chalk.gray('Details:'));

    for (const [key, value] of Object.entries(details)) {
      console.log(chalk.gray(`  ${key}: ${value}`));
    }

    return this.confirm('\nProceed?');
  }
}
```

## Enhanced Hooks Integration

### Deep CLI Hooks Integration
```typescript
// src/cli/hooks/cli-hooks-manager.ts
interface CLIHookEvent {
  type: 'command_start' | 'command_end' | 'command_error' | 'agent_spawn' | 'task_complete';
  command: string;
  args: string[];
  context: ExecutionContext;
  timestamp: Date;
}

export class CLIHooksManager {
  private hooks: Map<string, HookHandler[]> = new Map();
  private learningIntegration: LearningHooksIntegration;

  constructor() {
    this.learningIntegration = new LearningHooksIntegration();
    this.setupDefaultHooks();
  }

  private setupDefaultHooks(): void {
    // Learning integration hooks
    this.registerHook('command_start', async (event: CLIHookEvent) => {
      await this.learningIntegration.recordCommandStart(event);
    });

    this.registerHook('command_end', async (event: CLIHookEvent) => {
      await this.learningIntegration.recordCommandSuccess(event);
    });

    this.registerHook('command_error', async (event: CLIHookEvent) => {
      await this.learningIntegration.recordCommandError(event);
    });

    // Intelligent suggestions
    this.registerHook('command_start', async (event: CLIHookEvent) => {
      const suggestions = await this.generateIntelligentSuggestions(event);
      if (suggestions.length > 0) {
        this.displaySuggestions(suggestions);
      }
    });

    // Performance monitoring
    this.registerHook('command_end', async (event: CLIHookEvent) => {
      await this.recordPerformanceMetrics(event);
    });
  }

  async executeHooks(type: string, event: CLIHookEvent): Promise<void> {
    const handlers = this.hooks.get(type) || [];

    await Promise.all(handlers.map(handler =>
      this.executeHookSafely(handler, event)
    ));
  }

  private async generateIntelligentSuggestions(event: CLIHookEvent): Promise<Suggestion[]> {
    const context = await this.learningIntegration.getExecutionContext(event);
    const patterns = await this.learningIntegration.findSimilarPatterns(context);

    return patterns.map(pattern => ({
      type: 'optimization',
      message: `Based on similar executions, consider: ${pattern.suggestion}`,
      confidence: pattern.confidence
    }));
  }
}
```

### Learning Integration
```typescript
// src/cli/hooks/learning-hooks-integration.ts
export class LearningHooksIntegration {
  constructor(
    private agenticFlowHooks: AgenticFlowHooksClient,
    private agentDBLearning: AgentDBLearningClient
  ) {}

  async recordCommandStart(event: CLIHookEvent): Promise<void> {
    // Start trajectory tracking
    await this.agenticFlowHooks.trajectoryStart({
      sessionId: event.context.sessionId,
      command: event.command,
      args: event.args,
      context: event.context
    });

    // Record experience in AgentDB
    await this.agentDBLearning.recordExperience({
      type: 'command_execution',
      state: this.encodeCommandState(event),
      action: event.command,
      timestamp: event.timestamp
    });
  }

  async recordCommandSuccess(event: CLIHookEvent): Promise<void> {
    const executionTime = Date.now() - event.timestamp.getTime();
    const reward = this.calculateReward(event, executionTime, true);

    // Complete trajectory
    await this.agenticFlowHooks.trajectoryEnd({
      sessionId: event.context.sessionId,
      success: true,
      reward,
      verdict: 'positive'
    });

    // Submit feedback to learning system
    await this.agentDBLearning.submitFeedback({
      sessionId: event.context.learningSessionId,
      reward,
      success: true,
      latencyMs: executionTime
    });

    // Store successful pattern
    if (reward > 0.8) {
      await this.agenticFlowHooks.storePattern({
        pattern: event.command,
        solution: event.context.result,
        confidence: reward
      });
    }
  }

  async recordCommandError(event: CLIHookEvent): Promise<void> {
    const executionTime = Date.now() - event.timestamp.getTime();
    const reward = this.calculateReward(event, executionTime, false);

    // Complete trajectory with error
    await this.agenticFlowHooks.trajectoryEnd({
      sessionId: event.context.sessionId,
      success: false,
      reward,
      verdict: 'negative',
      error: event.context.error
    });

    // Learn from failure
    await this.agentDBLearning.submitFeedback({
      sessionId: event.context.learningSessionId,
      reward,
      success: false,
      latencyMs: executionTime,
      error: event.context.error
    });
  }

  private calculateReward(event: CLIHookEvent, executionTime: number, success: boolean): number {
    if (!success) return 0;

    // Base reward for success
    let reward = 0.5;

    // Performance bonus (faster execution)
    const expectedTime = this.getExpectedExecutionTime(event.command);
    if (executionTime < expectedTime) {
      reward += 0.3 * (1 - executionTime / expectedTime);
    }

    // Complexity bonus
    const complexity = this.calculateCommandComplexity(event);
    reward += complexity * 0.2;

    return Math.min(reward, 1.0);
  }
}
```

## Intelligent Workflow Automation

### Workflow Orchestrator
```typescript
// src/cli/workflows/workflow-orchestrator.ts
interface WorkflowStep {
  id: string;
  command: string;
  args: string[];
  dependsOn: string[];
  condition?: WorkflowCondition;
  retryPolicy?: RetryPolicy;
}

export class WorkflowOrchestrator {
  constructor(
    private commandRegistry: ModularCommandRegistry,
    private promptService: InteractivePromptService
  ) {}

  async executeWorkflow(workflow: Workflow): Promise<WorkflowResult> {
    const context = new WorkflowExecutionContext(workflow);

    // Display workflow overview
    await this.displayWorkflowOverview(workflow);

    const confirmed = await this.promptService.confirm(
      'Execute this workflow?'
    );

    if (!confirmed) {
      return WorkflowResult.cancelled();
    }

    // Execute steps
    return this.promptService.progressTask(
      async ({ updateProgress }) => {
        const steps = this.sortStepsByDependencies(workflow.steps);

        for (let i = 0; i < steps.length; i++) {
          const step = steps[i];
          updateProgress((i / steps.length) * 100, `Executing ${step.command}`);

          await this.executeStep(step, context);
        }

        return WorkflowResult.success(context.getResults());
      },
      { title: `Workflow: ${workflow.name}` }
    );
  }

  async generateWorkflowFromIntent(intent: string): Promise<Workflow> {
    // Use learning system to generate workflow
    const patterns = await this.findWorkflowPatterns(intent);

    if (patterns.length === 0) {
      throw new Error('Could not generate workflow for intent');
    }

    // Select best pattern or let user choose
    const selectedPattern = patterns.length === 1
      ? patterns[0]
      : await this.promptService.select({
          message: 'Select workflow template:',
          choices: patterns.map(p => ({
            name: `${p.name} (${p.confidence}% match)`,
            value: p
          }))
        });

    return this.customizeWorkflow(selectedPattern, intent);
  }

  private async executeStep(step: WorkflowStep, context: WorkflowExecutionContext): Promise<void> {
    // Check conditions
    if (step.condition && !this.evaluateCondition(step.condition, context)) {
      context.skipStep(step.id, 'Condition not met');
      return;
    }

    // Check dependencies
    const missingDeps = step.dependsOn.filter(dep => !context.isStepCompleted(dep));
    if (missingDeps.length > 0) {
      throw new WorkflowError(`Step ${step.id} has unmet dependencies: ${missingDeps.join(', ')}`);
    }

    // Execute with retry policy
    const retryPolicy = step.retryPolicy || { maxAttempts: 1 };
    let lastError: Error | null = null;

    for (let attempt = 1; attempt <= retryPolicy.maxAttempts; attempt++) {
      try {
        const result = await this.commandRegistry.executeCommand(step.command, step.args);
        context.completeStep(step.id, result);
        return;
      } catch (error) {
        lastError = error as Error;

        if (attempt < retryPolicy.maxAttempts) {
          await this.delay(retryPolicy.backoffMs || 1000);
        }
      }
    }

    throw new WorkflowError(`Step ${step.id} failed after ${retryPolicy.maxAttempts} attempts: ${lastError?.message}`);
  }
}
```

## Performance Optimization

### Command Performance Monitoring
```typescript
// src/cli/performance/command-performance.ts
export class CommandPerformanceMonitor {
  private metrics = new Map<string, CommandMetrics>();

  async measureCommand<T>(
    commandName: string,
    executor: () => Promise<T>
  ): Promise<T> {
    const start = performance.now();
    const memBefore = process.memoryUsage();

    try {
      const result = await executor();
      const end = performance.now();
      const memAfter = process.memoryUsage();

      this.recordMetrics(commandName, {
        executionTime: end - start,
        memoryDelta: memAfter.heapUsed - memBefore.heapUsed,
        success: true
      });

      return result;
    } catch (error) {
      const end = performance.now();

      this.recordMetrics(commandName, {
        executionTime: end - start,
        memoryDelta: 0,
        success: false,
        error: error as Error
      });

      throw error;
    }
  }

  private recordMetrics(command: string, measurement: PerformanceMeasurement): void {
    if (!this.metrics.has(command)) {
      this.metrics.set(command, new CommandMetrics(command));
    }

    const metrics = this.metrics.get(command)!;
    metrics.addMeasurement(measurement);

    // Alert if performance degrades
    if (metrics.getP95ExecutionTime() > 5000) { // 5 seconds
      console.warn(`⚠️  Command '${command}' is performing slowly (P95: ${metrics.getP95ExecutionTime()}ms)`);
    }
  }

  getCommandReport(command: string): PerformanceReport {
    const metrics = this.metrics.get(command);
    if (!metrics) {
      throw new Error(`No metrics found for command: ${command}`);
    }

    return {
      command,
      totalExecutions: metrics.getTotalExecutions(),
      successRate: metrics.getSuccessRate(),
      avgExecutionTime: metrics.getAverageExecutionTime(),
      p95ExecutionTime: metrics.getP95ExecutionTime(),
      avgMemoryUsage: metrics.getAverageMemoryUsage(),
      recommendations: this.generateRecommendations(metrics)
    };
  }
}
```

## Smart Auto-completion

### Intelligent Command Completion
```typescript
// src/cli/completion/intelligent-completion.ts
export class IntelligentCompletion {
  constructor(
    private learningService: LearningService,
    private commandRegistry: ModularCommandRegistry
  ) {}

  async generateCompletions(
    partial: string,
    context: CompletionContext
  ): Promise<Completion[]> {
    const completions: Completion[] = [];

    // 1. Exact command matches
    const exactMatches = this.commandRegistry.findCommandsByPrefix(partial);
    completions.push(...exactMatches.map(cmd => ({
      value: cmd.name,
      description: cmd.description,
      type: 'command',
      confidence: 1.0
    })));

    // 2. Learning-based suggestions
    const learnedSuggestions = await this.learningService.suggestCommands(
      partial,
      context
    );
    completions.push(...learnedSuggestions);

    // 3. Context-aware suggestions
    const contextualSuggestions = await this.generateContextualSuggestions(
      partial,
      context
    );
    completions.push(...contextualSuggestions);

    // Sort by confidence and relevance
    return completions
      .sort((a, b) => b.confidence - a.confidence)
      .slice(0, 10); // Top 10 suggestions
  }

  private async generateContextualSuggestions(
    partial: string,
    context: CompletionContext
  ): Promise<Completion[]> {
    const suggestions: Completion[] = [];

    // If in git repository, suggest git-related commands
    if (context.isGitRepository) {
      if (partial.startsWith('git')) {
        suggestions.push({
          value: 'git commit',
          description: 'Create git commit with generated message',
          type: 'workflow',
          confidence: 0.8
        });
      }
    }

    // If package.json exists, suggest npm commands
    if (context.hasPackageJson) {
      if (partial.startsWith('npm') || partial.startsWith('swarm')) {
        suggestions.push({
          value: 'swarm init',
          description: 'Initialize swarm for this project',
          type: 'workflow',
          confidence: 0.9
        });
      }
    }

    return suggestions;
  }
}
```

## Success Metrics

### CLI Performance Targets
- [ ] **Command Response**: <200ms average command execution time
- [ ] **File Decomposition**: index.ts (108KB) → <10KB per command module
- [ ] **Interactive UX**: Smart prompts with context awareness
- [ ] **Hook Integration**: Deep lifecycle integration with learning
- [ ] **Workflow Automation**: Intelligent multi-step command orchestration
- [ ] **Auto-completion**: >90% accuracy for command suggestions

### User Experience Improvements
```typescript
const cliImprovements = {
  before: {
    commandResponse: '~500ms',
    interactivity: 'Basic command parsing',
    workflows: 'Manual command chaining',
    suggestions: 'Static help text'
  },

  after: {
    commandResponse: '<200ms with caching',
    interactivity: 'Smart context-aware prompts',
    workflows: 'Automated multi-step execution',
    suggestions: 'Learning-based intelligent completion'
  }
};
```

## Related V3 Skills

- `v3-core-implementation` - Core domain integration
- `v3-memory-unification` - Memory-backed command caching
- `v3-swarm-coordination` - CLI swarm management integration
- `v3-performance-optimization` - CLI performance monitoring

## Usage Examples

### Complete CLI Modernization
```bash
# Full CLI modernization implementation
Task("CLI modernization implementation",
     "Implement modular commands, interactive prompts, and intelligent workflows",
     "cli-hooks-developer")
```

### Interactive Command Enhancement
```bash
# Enhanced interactive commands
claude-flow swarm init --interactive
claude-flow learning start --guided
claude-flow workflow create --from-intent "setup new project"
```

Overview

This skill modernizes the claude-flow v3 CLI by introducing a modular command architecture, intelligent interactive prompts, and a resilient hooks system. It streamlines command decomposition, adds context-aware UX, and enables learning-driven workflow automation for faster, more reliable CLI operations. The goal is improved performance, maintainability, and actionable suggestions during CLI use.

How this skill works

It restructures the CLI into small, focused command modules registered in a central registry that resolves commands, aliases, and fuzzy matches. An interactive prompt service provides select, multiselect, input, confirm, and progress flows with dynamic imports to minimize bundle size. A hooks manager captures lifecycle events and integrates with a learning subsystem to record execution trajectories, surface intelligent suggestions, and collect performance metrics.

When to use it

  • Refactoring a monolithic CLI into modular, testable commands
  • Adding interactive, context-aware prompts to command flows
  • Automating command orchestration and intelligent chaining
  • Integrating runtime learning for suggestions and telemetry
  • Improving CLI performance and responsiveness (<200ms goal)

Best practices

  • Break large command files into modules of ~500 lines or less for clarity
  • Use middleware stacks for cross-cutting concerns (auth, logging, validation)
  • Favor dynamic imports for prompt and progress dependencies to reduce startup cost
  • Implement hooks for command lifecycle events and keep handlers resilient and non-blocking
  • Record contextual data for learning integration while respecting privacy and opt-outs

Example use cases

  • Interactive swarm orchestration: initialize and configure multi-agent swarms with guided prompts and lifecycle hooks
  • Learning-driven optimization: auto-select learning algorithms based on current task context and record feedback as reward signals
  • Interactive metrics and progress: display live progress bars for long tasks and show selectable metrics dashboards
  • Command suggestions: surface optimization tips after command runs based on similar past executions
  • Modular developer workflow: enable quick command discovery, fuzzy matching, and helpful examples in each command module

FAQ

Will this add runtime dependencies for prompts?

Prompt and progress libraries are dynamically imported to keep the CLI lean; dependencies only load when features are used.

How are hooks protected from breaking the CLI?

Hooks execute concurrently and are wrapped in safe execution paths so failures are logged but do not block primary command completion.