home / skills / pluginagentmarketplace / custom-plugin-mongodb / mongodb-index-creation

mongodb-index-creation skill

/skills/mongodb-index-creation

This skill helps you master MongoDB index creation and types to dramatically boost query performance through proper single-field, compound, text, and

npx playbooks add skill pluginagentmarketplace/custom-plugin-mongodb --skill mongodb-index-creation

Review the files below or copy the command above to add this skill to your agents.

Files (4)
SKILL.md
7.8 KB
---
name: mongodb-index-creation
version: "2.1.0"
description: Master MongoDB index creation and types. Learn single-field, compound, unique, text, geospatial, and TTL indexes. Optimize query performance dramatically with proper indexing.
sasmp_version: "1.3.0"
bonded_agent: 04-mongodb-performance-indexing
bond_type: PRIMARY_BOND

# Production-Grade Skill Configuration
capabilities:
  - single-field-indexes
  - compound-indexes
  - unique-indexes
  - text-indexes
  - geospatial-indexes
  - ttl-indexes

input_validation:
  required_context:
    - collection_name
    - query_patterns
  optional_context:
    - existing_indexes
    - write_frequency
    - collection_size

output_format:
  index_definition: object
  creation_command: string
  impact_analysis: object
  maintenance_notes: array

error_handling:
  common_errors:
    - code: INDEX001
      condition: "Duplicate index"
      recovery: "Check existing indexes, drop duplicate before creating"
    - code: INDEX002
      condition: "Background index build failed"
      recovery: "Check disk space, memory, restart build with background: true"
    - code: INDEX003
      condition: "Index too large for memory"
      recovery: "Consider partial index or remove low-value indexes"

prerequisites:
  mongodb_version: "4.4+"
  required_knowledge:
    - query-patterns
    - esr-rule
  performance_baseline:
    - "Current query latencies documented"

testing:
  unit_test_template: |
    // Verify index created and used
    await collection.createIndex({ field: 1 })
    const indexes = await collection.indexes()
    expect(indexes.some(i => i.key.field === 1)).toBe(true)
    const explain = await collection.find({ field: value }).explain()
    expect(explain.queryPlanner.winningPlan.inputStage.stage).toBe('IXSCAN')
---

# MongoDB Index Creation & Types

Dramatically improve query performance with strategic indexing.

## Quick Start

### Create Indexes
```javascript
// Single field index
await collection.createIndex({ email: 1 })

// Compound index (order matters!)
await collection.createIndex({ status: 1, createdAt: -1 })

// Unique index
await collection.createIndex({ email: 1 }, { unique: true })

// Sparse index (skip null values)
await collection.createIndex({ phone: 1 }, { sparse: true })

// TTL index (auto-delete after 24 hours)
await collection.createIndex({ createdAt: 1 }, { expireAfterSeconds: 86400 })

// Text index (full-text search)
await collection.createIndex({ title: 'text', content: 'text' })

// Geospatial index
await collection.createIndex({ location: '2dsphere' })
```

## Index Types

### Single Field Index
```javascript
// Simple index for one field
db.users.createIndex({ email: 1 })

// Benefits:
// - Speeds up queries on email field
// - Speeds up sorts on email
// - Speeds up range queries: { $gt, $lt }

// When to use:
// - Frequently filtered/sorted field
// - High cardinality (many unique values)
```

### Compound Index
```javascript
// Multiple fields - ORDER MATTERS!
db.orders.createIndex({ status: 1, createdAt: -1 })

// Good for queries like:
// { status: 'completed', createdAt: {$gt: date} }
// { status: 'completed' } // Can use this index

// Bad for:
// { createdAt: {$gt: date} } // Won't use index well
```

### Unique Index
```javascript
// Ensure field uniqueness
db.users.createIndex({ email: 1 }, { unique: true })

// Prevents duplicates:
// - insertOne with duplicate email → ERROR
// - Can't insert if email already exists

// Sparse unique (allow multiple nulls)
db.users.createIndex({ phone: 1 }, { unique: true, sparse: true })
```

### Sparse Index
```javascript
// Skip documents where field is null/missing
db.users.createIndex({ phone: 1 }, { sparse: true })

// Benefits:
// - Smaller index (excludes nulls)
// - Matches queries with { $exists: true }

// When to use:
// - Optional fields (not all documents have it)
// - Reduce index size
```

### Text Index
```javascript
// Full-text search
db.articles.createIndex({
  title: 'text',
  content: 'text',
  tags: 'text'
})

// Query:
db.articles.find({ $text: { $search: 'mongodb' } })

// Weights (title more important than content)
db.articles.createIndex({
  title: 'text',
  content: 'text'
}, { weights: { title: 10, content: 5 } })
```

### Geospatial Index
```javascript
// 2D spherical (lat/long)
db.venues.createIndex({ location: '2dsphere' })

// Query nearby
db.venues.find({
  location: {
    $near: {
      type: 'Point',
      coordinates: [-73.97, 40.77]
    },
    $maxDistance: 5000  // 5km
  }
})
```

### TTL Index
```javascript
// Auto-delete documents after time period
db.sessions.createIndex({ createdAt: 1 }, {
  expireAfterSeconds: 3600  // 1 hour
})

// Use cases:
// - Sessions that expire
// - Temporary logs
// - Cache-like collections

// MongoDB checks once per minute
// Deletion might lag up to 1 minute
```

## Index Management

### List Indexes
```javascript
// Show all indexes
const indexes = await collection.indexes()
console.log(indexes)

// Shows: name, key, size, doc count
```

### Drop Index
```javascript
// Drop specific index
await collection.dropIndex('email_1')

// Drop all non-_id indexes
await collection.dropIndexes()
```

### Index Options
```javascript
await collection.createIndex({ email: 1 }, {
  unique: true,           // Enforce uniqueness
  sparse: true,          // Skip nulls
  background: true,      // Don't block writes
  expireAfterSeconds: 86400, // TTL
  collation: { locale: 'en' }, // Language-specific
  name: 'custom_name'    // Custom index name
})
```

## Index Design: ESR Rule

**Equality, Sort, Range** - optimal compound index order

```javascript
// Query: Find active users sorted by created date, age 18-65
db.users.find({
  status: 'active',          // Equality
  age: { $gte: 18, $lte: 65 } // Range
}).sort({ createdAt: -1 })     // Sort

// Optimal index:
db.users.createIndex({
  status: 1,         // Equality first
  createdAt: -1,    // Sort second
  age: 1            // Range last
})
```

## Covered Queries

### Make Query "Covered"
```javascript
// Query returns entirely from index, no documents fetched!

// Create index with all needed fields
db.users.createIndex({ email: 1, name: 1, age: 1 })

// Query (covered - no docs fetched)
db.users.find(
  { email: '[email protected]' },
  { projection: { email: 1, name: 1, age: 1, _id: 0 } }
)

// Much faster than fetching documents!
```

## Monitoring Indexes

### Check Index Usage
```javascript
// MongoDB 4.4+
db.collection.aggregate([
  { $indexStats: {} }
])

// Shows:
// - accesses.ops: Number of operations using index
// - accesses.since: When index was created
```

### Remove Unused Indexes
```javascript
// Identify unused:
// - Low accesses.ops value
// - Recent accesses.since date

// Drop unused indexes:
await collection.dropIndex('unused_index_name')
```

## Best Practices

✅ **Index Design:**
1. **Index for queries** - Add on frequently filtered fields
2. **Use ESR rule** - Equality, Sort, Range order
3. **Avoid over-indexing** - Each index has cost
4. **Monitor index size** - Large indexes need memory
5. **Test impact** - Measure query performance

✅ **Performance:**
1. **Create indexes early** - Before data growth
2. **Use explain()** - Verify index usage (IXSCAN)
3. **Batch index creation** - If many needed
4. **Monitor index stats** - Remove unused
5. **Plan for growth** - Future query patterns

❌ **Avoid:**
1. **Index everything** - Wastes storage and memory
2. **Complex regex without index** - Always slow
3. **Sorting without index** - Memory-intensive
4. **Large text indexes** - Memory usage
5. **Outdated indexes** - Remove when no longer needed

## Next Steps

1. **Identify slow queries** - Use explain()
2. **Create strategic indexes** - For your access patterns
3. **Monitor performance** - Before/after metrics
4. **Optimize compound indexes** - ESR rule
5. **Remove unused indexes** - Keep lean

---

**Ready to speed up your MongoDB!** ⚡

Overview

This skill teaches practical MongoDB index creation and types to dramatically improve query performance. It covers single-field, compound, unique, sparse, text, geospatial, and TTL indexes, plus management and monitoring techniques. Learn patterns like ESR (Equality, Sort, Range) and how to design covered queries to avoid document fetches.

How this skill works

The skill explains how to create indexes with concrete examples and options (unique, sparse, background, expireAfterSeconds, collation, custom names). It inspects common query patterns and shows how to select index types and field order to enable index scans, covered queries, or geospatial and full-text searches. It also covers listing, dropping, and monitoring index usage with indexStats.

When to use it

  • Optimize queries that filter or sort frequently accessed fields
  • Enforce uniqueness on keys like email or username
  • Support full-text search across title/content using text indexes
  • Store geo-coordinates and run proximity queries with 2dsphere
  • Auto-expire sessions, caches, or temporary logs with TTL indexes
  • Create covered queries to avoid fetching full documents

Best practices

  • Design indexes for actual queries — index what you filter/sort on
  • Apply the ESR rule: Equality first, Sort second, Range last in compound indexes
  • Avoid over-indexing; every index adds write and storage cost
  • Create indexes early and batch-create when initializing large datasets
  • Use explain() and $indexStats to verify usage and remove unused indexes

Example use cases

  • Unique user sign-up: create unique index on email to prevent duplicates
  • Recent orders list: compound index on {status:1, createdAt:-1} for filtered, sorted queries
  • Session cleanup: TTL index on createdAt to auto-remove expired sessions
  • Local discovery: 2dsphere index for finding nearby venues by lat/long
  • Article search: text index across title and content with weighted fields

FAQ

How do I choose field order for a compound index?

Follow ESR: put equality fields first, fields used for sorting next, and range fields last. Order affects which query shapes the index supports.

When should I use sparse vs unique+sparse?

Use sparse when a field is optional to keep the index small. Combine unique with sparse to allow multiple documents with a missing/null field while enforcing uniqueness for present values.