home / skills / pluginagentmarketplace / custom-plugin-ai-data-scientist / data-visualization
This skill helps you create and customize data visualizations with Python libraries like matplotlib, seaborn, and plotly to explore insights and communicate
npx playbooks add skill pluginagentmarketplace/custom-plugin-ai-data-scientist --skill data-visualizationReview the files below or copy the command above to add this skill to your agents.
---
name: data-visualization
description: EDA, dashboards, Matplotlib, Seaborn, Plotly, and BI tools. Use for creating visualizations, exploratory analysis, or dashboards.
sasmp_version: "1.3.0"
bonded_agent: 05-visualization-communication
bond_type: PRIMARY_BOND
---
# Data Visualization
Create compelling visualizations to explore and communicate data insights.
## Quick Start
### Matplotlib Basics
```python
import matplotlib.pyplot as plt
# Line plot
plt.figure(figsize=(10, 6))
plt.plot(x, y, marker='o', linestyle='-', color='blue', label='Series 1')
plt.xlabel('X Label')
plt.ylabel('Y Label')
plt.title('Title')
plt.legend()
plt.grid(True, alpha=0.3)
plt.show()
# Bar chart
plt.bar(categories, values, color='skyblue', edgecolor='black')
plt.xlabel('Categories')
plt.ylabel('Values')
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
```
### Seaborn for Statistical Plots
```python
import seaborn as sns
# Set style
sns.set_style("whitegrid")
# Distribution
sns.histplot(data=df, x='value', kde=True, bins=30)
# Box plot
sns.boxplot(data=df, x='category', y='value')
# Violin plot
sns.violinplot(data=df, x='category', y='value')
# Heatmap
corr = df.corr()
sns.heatmap(corr, annot=True, cmap='coolwarm', center=0)
# Pairplot
sns.pairplot(df, hue='target', diag_kind='kde')
```
## Exploratory Data Analysis
```python
# Quick overview
df.info()
df.describe()
# Missing values
df.isnull().sum()
# Value counts
df['category'].value_counts().plot(kind='bar')
# Distribution
df.hist(figsize=(12, 10), bins=30)
plt.tight_layout()
plt.show()
# Correlation matrix
plt.figure(figsize=(10, 8))
sns.heatmap(df.corr(), annot=True, cmap='coolwarm',
center=0, square=True)
plt.title('Correlation Matrix')
plt.show()
```
## Interactive Visualizations with Plotly
```python
import plotly.express as px
import plotly.graph_objects as go
# Interactive scatter
fig = px.scatter(df, x='feature1', y='target',
color='category', size='value',
hover_data=['name', 'date'],
title='Interactive Scatter Plot')
fig.show()
# Time series
fig = px.line(df, x='date', y='value', color='category',
title='Time Series')
fig.update_xaxes(rangeslider_visible=True)
fig.show()
# 3D scatter
fig = px.scatter_3d(df, x='x', y='y', z='z',
color='category', size='value')
fig.show()
```
## Dashboard with Plotly Dash
```python
import dash
from dash import dcc, html
from dash.dependencies import Input, Output
app = dash.Dash(__name__)
app.layout = html.Div([
html.H1('Sales Dashboard'),
dcc.Dropdown(
id='category-dropdown',
options=[{'label': cat, 'value': cat}
for cat in df['category'].unique()],
value=df['category'].unique()[0]
),
dcc.Graph(id='sales-graph'),
dcc.RangeSlider(
id='year-slider',
min=df['year'].min(),
max=df['year'].max(),
value=[df['year'].min(), df['year'].max()],
marks={str(year): str(year)
for year in df['year'].unique()}
)
])
@app.callback(
Output('sales-graph', 'figure'),
[Input('category-dropdown', 'value'),
Input('year-slider', 'value')]
)
def update_graph(selected_category, year_range):
filtered_df = df[
(df['category'] == selected_category) &
(df['year'] >= year_range[0]) &
(df['year'] <= year_range[1])
]
fig = px.line(filtered_df, x='date', y='sales')
return fig
if __name__ == '__main__':
app.run_server(debug=True)
```
## Subplots
```python
fig, axes = plt.subplots(2, 2, figsize=(12, 10))
# Top left
axes[0, 0].hist(data1, bins=30)
axes[0, 0].set_title('Histogram')
# Top right
axes[0, 1].scatter(x, y)
axes[0, 1].set_title('Scatter')
# Bottom left
axes[1, 0].plot(x, y)
axes[1, 0].set_title('Line Plot')
# Bottom right
axes[1, 1].boxplot([data1, data2, data3])
axes[1, 1].set_title('Box Plot')
plt.tight_layout()
plt.show()
```
## Visualization Best Practices
1. **Choose the right chart type:**
- Comparison: Bar chart
- Distribution: Histogram, box plot
- Relationship: Scatter plot
- Time series: Line chart
- Composition: Pie chart, stacked bar
2. **Design principles:**
- Clear labels and titles
- Appropriate color schemes
- Remove chart junk
- Consistent formatting
- Accessibility (color-blind friendly)
3. **Common pitfalls to avoid:**
- Misleading axes (non-zero baseline)
- Too many colors
- 3D charts (distort perception)
- Pie charts with many categories
- Dual y-axes (confusing)
## Color Palettes
```python
# Seaborn palettes
sns.color_palette("viridis", as_cmap=True)
sns.color_palette("coolwarm", as_cmap=True)
sns.color_palette("Set2")
# Custom colors
colors = ['#FF6B6B', '#4ECDC4', '#45B7D1', '#FFA07A']
```
## Export Figures
```python
# High-resolution PNG
plt.savefig('figure.png', dpi=300, bbox_inches='tight')
# Vector format (PDF, SVG)
plt.savefig('figure.pdf', bbox_inches='tight')
plt.savefig('figure.svg', bbox_inches='tight')
```
This skill provides practical tools and templates for creating data visualizations, exploratory data analysis, and interactive dashboards using Matplotlib, Seaborn, Plotly, and Dash. It focuses on producing clear, reproducible plots for analysis and presentation, with examples for static figures, statistical plots, and interactive charts. Use it to accelerate visual storytelling and deliver insights quickly from raw datasets.
The skill supplies ready-to-run code snippets and patterns for common visualization tasks: line and bar charts, histograms, box/violin plots, correlation heatmaps, pairplots, and multi-panel subplots. For interactivity it shows Plotly Express examples and a Dash dashboard template with callbacks. It also covers export options, color palettes, and visualization best practices to ensure accessible and accurate charts.
Which library should I use for static vs interactive plots?
Use Matplotlib/Seaborn for static, publication-ready plots and Plotly for interactive exploration and dashboards.
How do I make visualizations accessible to color-blind users?
Choose color-blind friendly palettes (e.g., Viridis, Set2), ensure contrast, and add shape or pattern encodings when needed.
What export formats are recommended for presentations and print?
Export raster images at high DPI (PNG, dpi=300) for slides and use vector formats (PDF, SVG) for print and scalable figures.