home / skills / plastic-labs / honcho / honcho-integration
This skill helps you integrate Honcho memory and social cognition into codebases, enabling persistent context, peer management, and dialectic chat endpoints.
npx playbooks add skill plastic-labs/honcho --skill honcho-integrationReview the files below or copy the command above to add this skill to your agents.
---
name: honcho-integration
description: Integrate Honcho memory and social cognition into existing Python or TypeScript codebases. Use when adding Honcho SDK, setting up peers, configuring sessions, implementing the dialectic chat endpoint for AI agents, or wiring Honcho into bot frameworks (nanobot, openclaw, picoclaw, etc).
allowed-tools: Read, Glob, Grep, Bash(uv:*), Bash(bun:*), Bash(npm:*), Edit, Write, WebFetch, AskUserQuestion
---
# Honcho Integration Guide
## What is Honcho
Honcho is an open source memory library for building stateful agents. It works with any model, framework, or architecture. You send Honcho the messages from your conversations, and custom reasoning models process them in the background — extracting premises, drawing conclusions, and building rich representations of each participant over time. Your agent can then query those representations on-demand ("What does this user care about?", "How technical is this person?") and get grounded, reasoned answers.
The key mental model: **Peers** are any participant — human or AI. Both are represented the same way. Observation settings (`observe_me`, `observe_others`) control which peers Honcho reasons about. Typically you want Honcho to model your users (`observe_me=True`) but not your AI assistant (`observe_me=False`). **Sessions** scope conversations between peers. **Messages** are the raw data you feed in — Honcho reasons about them asynchronously and stores the results as the peer's **representation**. No messages means no reasoning means no memory.
Your agent accesses this memory through `peer.chat(query)` (ask a natural language question, get a reasoned answer), `session.context()` (get formatted conversation history + representations), or both.
## Integration Workflow
Follow these phases in order:
### Phase 1: Codebase Exploration
Before asking the user anything, explore the codebase to understand:
1. **Language & Framework**: Is this Python or TypeScript? What frameworks are used (FastAPI, Express, Next.js, etc.)?
2. **Existing AI/LLM code**: Search for existing LLM integrations (OpenAI, Anthropic, LangChain, etc.)
3. **Entity structure**: Identify users, agents, bots, or other entities that interact
4. **Session/conversation handling**: How does the app currently manage conversations?
5. **Message flow**: Where are messages sent/received? What's the request/response cycle?
Use Glob and Grep to find:
- `**/*.py` or `**/*.ts` files with "openai", "anthropic", "llm", "chat", "message"
- User/session models or types
- API routes handling chat or conversation endpoints
> **Bot framework detected?** If the codebase is built around an agent loop, tool registry, session manager, and message bus (e.g., nanobot, openclaw, picoclaw), read `{baseDir}/references/bot-frameworks.md` for framework-specific integration guidance and check `{baseDir}/references/bot-frameworks/<framework>/` for concrete reference implementations.
### Phase 2: Interview (REQUIRED)
After exploring the codebase, use the **AskUserQuestion** tool to clarify integration requirements. Ask these questions (adapt based on what you learned in Phase 1):
#### Question Set 1 - Entities & Peers
Ask about which entities should be Honcho peers:
- header: "Peers"
- question: "Which entities should Honcho track and build representations for?"
- options based on what you found (e.g., "End users only", "Users + AI assistant", "Users + multiple AI agents", "All participants including third-party services")
- Include a follow-up if they have multiple AI agents: should any AI peers be observed?
#### Question Set 2 - Integration Pattern
Ask how they want to use Honcho context:
- header: "Pattern"
- question: "How should your AI access Honcho's user context?"
- options:
- "Tool call (Recommended)" - "Agent queries Honcho on-demand via function calling"
- "Pre-fetch" - "Fetch user context before each LLM call with predefined queries"
- "context()" - "Include conversation history and representations in prompt"
- "Multiple patterns" - "Combine approaches for different use cases"
#### Question Set 3 - Session Structure
Ask about conversation structure:
- header: "Sessions"
- question: "How should conversations map to Honcho sessions?"
- options based on their app (e.g., "One session per chat thread", "One session per user", "Multiple users per session (group chat)", "Custom session logic")
#### Question Set 4 - Specific Queries (if using pre-fetch pattern)
If they chose pre-fetch, ask what context matters:
- header: "Context"
- question: "What user context should be fetched for the AI?"
- multiSelect: true
- options: "Communication style", "Expertise level", "Goals/priorities", "Preferences", "Recent activity summary", "Custom queries"
### Phase 3: Implementation
Based on interview responses, implement the integration:
1. Install the SDK
2. Create Honcho client initialization
3. Set up peer creation for identified entities
4. Implement the chosen integration pattern(s)
5. Add message storage after exchanges
6. Update any existing conversation handlers
### Phase 4: Verification
- Ensure all message exchanges are stored to Honcho
- Verify AI peers have `observe_me=False` (unless user specifically wants AI observation)
- Check that the workspace ID is consistent across the codebase
- Confirm environment variable for API key is documented
---
## Before You Start
1. **Check the latest SDK versions** at <https://docs.honcho.dev/changelog/introduction>
- Python SDK: `honcho-ai`
- TypeScript SDK: `@honcho-ai/sdk`
2. **Get an API key** ask the user to get a Honcho API key from <https://app.honcho.dev> and add it to the environment.
## Installation
### Python (use uv)
```bash
uv add honcho-ai
```
### TypeScript (use bun)
```bash
bun add @honcho-ai/sdk
```
## Sync vs Async
**TypeScript** — The SDK is async by default. All methods return promises. No separate sync API.
**Python** — The SDK provides both sync and async interfaces:
- **Sync** (default): `from honcho import Honcho` — use in sync frameworks (Flask, Django, CLI scripts)
- **Async**: `from honcho import Honcho` with `.aio` namespace — use in async frameworks (FastAPI, Starlette, async workers)
```python
# Sync usage (Flask, Django, scripts)
from honcho import Honcho
honcho = Honcho(workspace_id="my-app", api_key=os.environ["HONCHO_API_KEY"])
peer = honcho.peer("user-123")
response = peer.chat("What does this user prefer?")
# Async usage (FastAPI, Starlette)
from honcho import Honcho
honcho = Honcho(workspace_id="my-app", api_key=os.environ["HONCHO_API_KEY"])
peer = honcho.aio.peer("user-123")
response = await peer.chat("What does this user prefer?")
```
Match the client to the framework — check whether the codebase uses `async def` handlers or sync `def` handlers and choose accordingly. The rest of this skill shows sync Python examples; swap to `.aio` equivalents for async codebases.
## Core Integration Patterns
### 1. Initialize with a Single Workspace
Use ONE workspace for your entire application. The workspace name should reflect your app/product.
**Python:**
```python
from honcho import Honcho
import os
# Sync client (Flask, Django, scripts)
honcho = Honcho(
workspace_id="your-app-name",
api_key=os.environ["HONCHO_API_KEY"],
environment="production"
)
# Async client (FastAPI, Starlette) — use honcho.aio for all operations
# honcho.aio.peer(), honcho.aio.session(), etc.
```
**TypeScript:**
```typescript
import { Honcho } from '@honcho-ai/sdk';
// All methods are async by default
const honcho = new Honcho({
workspaceId: "your-app-name",
apiKey: process.env.HONCHO_API_KEY,
environment: "production"
});
```
### 2. Create Peers for ALL Entities
Create peers for **every entity** in your business logic - users AND AI assistants.
**Python:**
```python
from honcho import PeerConfig
# Human users
user = honcho.peer("user-123")
# AI assistants - set observe_me=False so Honcho doesn't model the AI
assistant = honcho.peer("assistant", configuration=PeerConfig(observe_me=False))
support_bot = honcho.peer("support-bot", configuration=PeerConfig(observe_me=False))
```
**TypeScript:**
```typescript
// Human users
const user = await honcho.peer("user-123");
// AI assistants - set observeMe=false so Honcho doesn't model the AI
const assistant = await honcho.peer("assistant", { configuration: { observeMe: false } });
const supportBot = await honcho.peer("support-bot", { configuration: { observeMe: false } });
```
### 3. Multi-Peer Sessions
Sessions can have multiple participants. Configure observation settings per-peer.
**Python:**
```python
from honcho.api_types import SessionPeerConfig
session = honcho.session("conversation-123")
# User is observed (Honcho builds a model of them)
user_config = SessionPeerConfig(observe_me=True, observe_others=True)
# AI is NOT observed (no model built of the AI)
ai_config = SessionPeerConfig(observe_me=False, observe_others=True)
session.add_peers([
(user, user_config),
(assistant, ai_config)
])
```
**TypeScript:**
```typescript
const session = await honcho.session("conversation-123");
await session.addPeers([
[user, { observeMe: true, observeOthers: true }],
[assistant, { observeMe: false, observeOthers: true }]
]);
```
### 4. Add Messages to Sessions
**Python:**
```python
session.add_messages([
user.message("I'm having trouble with my account"),
assistant.message("I'd be happy to help. What seems to be the issue?"),
user.message("I can't reset my password")
])
```
**TypeScript:**
```typescript
await session.addMessages([
user.message("I'm having trouble with my account"),
assistant.message("I'd be happy to help. What seems to be the issue?"),
user.message("I can't reset my password")
]);
```
## Using Honcho for AI Agents
### Pattern A: Dialectic Chat as a Tool Call (Recommended for Agents)
Make Honcho's chat endpoint available as a **tool** for your AI agent. This lets the agent query user context on-demand.
**Python (OpenAI function calling):**
```python
import openai
from honcho import Honcho
honcho = Honcho(workspace_id="my-app", api_key=os.environ["HONCHO_API_KEY"])
# Define the tool for your agent
honcho_tool = {
"type": "function",
"function": {
"name": "query_user_context",
"description": "Query Honcho to retrieve relevant context about the user based on their history and preferences. Use this when you need to understand the user's background, preferences, past interactions, or goals.",
"parameters": {
"type": "object",
"properties": {
"query": {
"type": "string",
"description": "A natural language question about the user, e.g. 'What are this user's main goals?' or 'What communication style does this user prefer?'"
}
},
"required": ["query"]
}
}
}
def handle_honcho_tool_call(user_id: str, query: str) -> str:
"""Execute the Honcho chat tool call."""
peer = honcho.peer(user_id)
return peer.chat(query)
# Use in your agent loop
def run_agent(user_id: str, user_message: str):
messages = [{"role": "user", "content": user_message}]
response = openai.chat.completions.create(
model="gpt-4",
messages=messages,
tools=[honcho_tool]
)
# Handle tool calls
if response.choices[0].message.tool_calls:
for tool_call in response.choices[0].message.tool_calls:
if tool_call.function.name == "query_user_context":
import json
args = json.loads(tool_call.function.arguments)
result = handle_honcho_tool_call(user_id, args["query"])
# Continue conversation with tool result...
```
**TypeScript (OpenAI function calling):**
```typescript
import OpenAI from 'openai';
import { Honcho } from '@honcho-ai/sdk';
const honcho = new Honcho({
workspaceId: "my-app",
apiKey: process.env.HONCHO_API_KEY
});
const honchoTool: OpenAI.ChatCompletionTool = {
type: "function",
function: {
name: "query_user_context",
description: "Query Honcho to retrieve relevant context about the user based on their history and preferences.",
parameters: {
type: "object",
properties: {
query: {
type: "string",
description: "A natural language question about the user"
}
},
required: ["query"]
}
}
};
async function handleHonchoToolCall(userId: string, query: string): Promise<string> {
const peer = await honcho.peer(userId);
return await peer.chat(query);
}
```
### Pattern B: Pre-fetch Context with Targeted Queries
For simpler integrations, fetch user context before the LLM call using pre-defined queries.
**Python:**
```python
def get_user_context_for_prompt(user_id: str) -> dict:
"""Fetch key user attributes via targeted Honcho queries."""
peer = honcho.peer(user_id)
return {
"communication_style": peer.chat("What communication style does this user prefer? Be concise."),
"expertise_level": peer.chat("What is this user's technical expertise level? Be concise."),
"current_goals": peer.chat("What are this user's current goals or priorities? Be concise."),
"preferences": peer.chat("What key preferences should I know about this user? Be concise.")
}
def build_system_prompt(user_context: dict) -> str:
return f"""You are a helpful assistant. Here's what you know about this user:
Communication style: {user_context['communication_style']}
Expertise level: {user_context['expertise_level']}
Current goals: {user_context['current_goals']}
Key preferences: {user_context['preferences']}
Tailor your responses accordingly."""
```
**TypeScript:**
```typescript
async function getUserContextForPrompt(userId: string): Promise<Record<string, string>> {
const peer = await honcho.peer(userId);
const [style, expertise, goals, preferences] = await Promise.all([
peer.chat("What communication style does this user prefer? Be concise."),
peer.chat("What is this user's technical expertise level? Be concise."),
peer.chat("What are this user's current goals or priorities? Be concise."),
peer.chat("What key preferences should I know about this user? Be concise.")
]);
return {
communicationStyle: style,
expertiseLevel: expertise,
currentGoals: goals,
preferences: preferences
};
}
```
### Pattern C: Get Context for LLM Integration
Use `context()` for conversation history with built-in LLM formatting.
**Python:**
```python
import openai
session = honcho.session("conversation-123")
user = honcho.peer("user-123")
assistant = honcho.peer("assistant", configuration=PeerConfig(observe_me=False))
# Get context formatted for your LLM
context = session.context(
tokens=2000,
peer_target=user.id, # Include representation of this user
summary=True # Include conversation summaries
)
# Convert to OpenAI format
messages = context.to_openai(assistant=assistant)
# Or Anthropic format
# messages = context.to_anthropic(assistant=assistant)
# Add the new user message
messages.append({"role": "user", "content": "What should I focus on today?"})
response = openai.chat.completions.create(
model="gpt-4",
messages=messages
)
# Store the exchange
session.add_messages([
user.message("What should I focus on today?"),
assistant.message(response.choices[0].message.content)
])
```
**TypeScript:**
```typescript
import OpenAI from 'openai';
const session = await honcho.session("conversation-123");
const user = await honcho.peer("user-123");
const assistant = await honcho.peer("assistant", { configuration: { observeMe: false } });
// Get context formatted for your LLM
const context = await session.context({
tokens: 2000,
peerTarget: user.id, // Include representation of this user
summary: true // Include conversation summaries
});
// Convert to OpenAI format
const messages = context.toOpenAI(assistant);
// Or Anthropic format
// const messages = context.toAnthropic(assistant);
// Add the new user message
messages.push({ role: "user", content: "What should I focus on today?" });
const openai = new OpenAI();
const response = await openai.chat.completions.create({
model: "gpt-4",
messages
});
// Store the exchange
await session.addMessages([
user.message("What should I focus on today?"),
assistant.message(response.choices[0].message.content!)
]);
```
## Streaming Responses
**Python:**
```python
stream = peer.chat_stream("What do we know about this user?")
for chunk in stream:
print(chunk, end="", flush=True)
```
**TypeScript:**
```typescript
const stream = await peer.chatStream("What do we know about this user?");
for await (const chunk of stream) {
process.stdout.write(chunk);
}
```
## Integration Checklist
When integrating Honcho into an existing codebase:
- [ ] Install SDK with `uv add honcho-ai` (Python) or `bun add @honcho-ai/sdk` (TypeScript)
- [ ] Set up `HONCHO_API_KEY` environment variable
- [ ] Initialize Honcho client with a single workspace ID
- [ ] Create peers for all entities (users AND AI assistants)
- [ ] Set `observe_me=False` for AI peers
- [ ] Configure sessions with appropriate peer observation settings
- [ ] Choose integration pattern:
- [ ] Tool call pattern for agentic systems
- [ ] Pre-fetch pattern for simpler integrations
- [ ] context() for conversation history
- [ ] Store messages after each exchange to build user models
## Common Mistakes to Avoid
1. **Multiple workspaces**: Use ONE workspace per application
2. **Forgetting AI peers**: Create peers for AI assistants, not just users
3. **Observing AI peers**: Set `observe_me=False` for AI peers unless you specifically want Honcho to model your AI's behavior
4. **Not storing messages**: Always call `add_messages()` to feed Honcho's reasoning engine
5. **Blocking on processing**: Messages are processed asynchronously — don't poll or wait for reasoning to complete before continuing
## Resources
- Documentation: <https://docs.honcho.dev>
- Latest SDK versions: <https://docs.honcho.dev/changelog/introduction>
- API Reference: <https://docs.honcho.dev/v3/api-reference/introduction>
This skill integrates Honcho memory and social cognition into Python or TypeScript codebases to build stateful, personalized AI agents. It guides setup of the SDK, peer and session modeling, message wiring, and implementing the dialectic chat endpoint so agents can query user context on-demand. Use it to add long-term user modeling, contextual prompts, or tool-based context retrieval for agent frameworks and bots.
The integration creates Honcho clients (sync or async) and instantiates peers for every participant (users, assistants, bots). Sessions group conversations and accept messages that Honcho reasons over asynchronously to build representations. Your agent accesses memory via peer.chat(query) or session.context(), or by exposing Honcho as a tool the agent can call during reasoning.
Do I need separate workspaces per environment?
Use one workspace per product; manage environments with the environment parameter (production, staging) and consistent workspace_id across deployments.
Should the SDK be async or sync?
Match the SDK mode to your framework: use honcho.aio for async frameworks (FastAPI) and the sync client for Flask/Django or scripts.