home / skills / personamanagmentlayer / pcl / trading-expert
This skill helps you design and test algorithmic trading strategies, optimize execution, and manage risk across markets with data-driven methods.
npx playbooks add skill personamanagmentlayer/pcl --skill trading-expertReview the files below or copy the command above to add this skill to your agents.
---
name: trading-expert
version: 1.0.0
description: Expert-level algorithmic trading, market systems, quantitative analysis, and trading platforms
category: domains
tags: [trading, algorithmic-trading, quant, markets, finance, hft]
allowed-tools:
- Read
- Write
- Edit
- Bash(python:*)
---
# Trading Expert
Expert guidance for algorithmic trading systems, quantitative analysis, market data processing, and trading platform development.
## Core Concepts
### Trading Systems
- Algorithmic trading strategies
- High-frequency trading (HFT)
- Market making
- Arbitrage strategies
- Portfolio optimization
- Risk management
### Market Data
- Order book processing
- Tick data analysis
- Market microstructure
- Real-time data feeds
- Historical data analysis
### Execution
- Order routing
- Smart order routing (SOR)
- Execution algorithms (TWAP, VWAP)
- Slippage minimization
- Transaction cost analysis
## Trading Strategy Implementation
```python
import pandas as pd
import numpy as np
from typing import Optional
class TradingStrategy:
def __init__(self, symbol: str, capital: float = 100000):
self.symbol = symbol
self.capital = capital
self.position = 0
self.cash = capital
self.trades = []
def moving_average_crossover(self, data: pd.DataFrame,
short_window: int = 50,
long_window: int = 200) -> pd.Series:
"""Simple Moving Average Crossover Strategy"""
data['SMA_short'] = data['close'].rolling(window=short_window).mean()
data['SMA_long'] = data['close'].rolling(window=long_window).mean()
# Generate signals
data['signal'] = 0
data.loc[data['SMA_short'] > data['SMA_long'], 'signal'] = 1
data.loc[data['SMA_short'] < data['SMA_long'], 'signal'] = -1
return data['signal']
def mean_reversion(self, data: pd.DataFrame,
window: int = 20,
num_std: float = 2.0) -> pd.Series:
"""Mean Reversion Strategy using Bollinger Bands"""
data['MA'] = data['close'].rolling(window=window).mean()
data['STD'] = data['close'].rolling(window=window).std()
data['upper_band'] = data['MA'] + (data['STD'] * num_std)
data['lower_band'] = data['MA'] - (data['STD'] * num_std)
# Generate signals
data['signal'] = 0
data.loc[data['close'] < data['lower_band'], 'signal'] = 1 # Buy
data.loc[data['close'] > data['upper_band'], 'signal'] = -1 # Sell
return data['signal']
def momentum_strategy(self, data: pd.DataFrame, period: int = 14) -> pd.Series:
"""Momentum Strategy using RSI"""
delta = data['close'].diff()
gain = (delta.where(delta > 0, 0)).rolling(window=period).mean()
loss = (-delta.where(delta < 0, 0)).rolling(window=period).mean()
rs = gain / loss
data['RSI'] = 100 - (100 / (1 + rs))
# Generate signals
data['signal'] = 0
data.loc[data['RSI'] < 30, 'signal'] = 1 # Oversold - Buy
data.loc[data['RSI'] > 70, 'signal'] = -1 # Overbought - Sell
return data['signal']
class Backtester:
def __init__(self, initial_capital: float = 100000):
self.initial_capital = initial_capital
self.capital = initial_capital
self.position = 0
self.trades = []
def run(self, data: pd.DataFrame, signals: pd.Series) -> dict:
"""Run backtest on historical data"""
portfolio_value = []
for i in range(len(data)):
if signals.iloc[i] == 1 and self.position == 0: # Buy signal
shares = self.capital // data['close'].iloc[i]
cost = shares * data['close'].iloc[i]
self.capital -= cost
self.position = shares
self.trades.append({
'type': 'BUY',
'price': data['close'].iloc[i],
'shares': shares,
'date': data.index[i]
})
elif signals.iloc[i] == -1 and self.position > 0: # Sell signal
proceeds = self.position * data['close'].iloc[i]
self.capital += proceeds
self.trades.append({
'type': 'SELL',
'price': data['close'].iloc[i],
'shares': self.position,
'date': data.index[i]
})
self.position = 0
# Calculate portfolio value
current_value = self.capital + (self.position * data['close'].iloc[i])
portfolio_value.append(current_value)
return self.calculate_metrics(portfolio_value, data)
def calculate_metrics(self, portfolio_value: list, data: pd.DataFrame) -> dict:
"""Calculate performance metrics"""
returns = pd.Series(portfolio_value).pct_change()
total_return = (portfolio_value[-1] - self.initial_capital) / self.initial_capital
sharpe_ratio = returns.mean() / returns.std() * np.sqrt(252)
max_drawdown = self.calculate_max_drawdown(portfolio_value)
return {
'total_return': total_return,
'sharpe_ratio': sharpe_ratio,
'max_drawdown': max_drawdown,
'total_trades': len(self.trades),
'final_value': portfolio_value[-1]
}
def calculate_max_drawdown(self, portfolio_value: list) -> float:
"""Calculate maximum drawdown"""
peak = portfolio_value[0]
max_dd = 0
for value in portfolio_value:
if value > peak:
peak = value
dd = (peak - value) / peak
if dd > max_dd:
max_dd = dd
return max_dd
```
## Order Execution
```python
from enum import Enum
from decimal import Decimal
from datetime import datetime
class OrderSide(Enum):
BUY = "BUY"
SELL = "SELL"
class OrderType(Enum):
MARKET = "MARKET"
LIMIT = "LIMIT"
STOP = "STOP"
STOP_LIMIT = "STOP_LIMIT"
class Order:
def __init__(self, symbol: str, side: OrderSide, order_type: OrderType,
quantity: int, price: Optional[Decimal] = None):
self.id = self.generate_order_id()
self.symbol = symbol
self.side = side
self.type = order_type
self.quantity = quantity
self.price = price
self.filled_quantity = 0
self.status = "NEW"
self.created_at = datetime.now()
def generate_order_id(self) -> str:
import uuid
return str(uuid.uuid4())
class OrderManager:
def __init__(self):
self.orders = {}
self.positions = {}
def place_order(self, order: Order) -> str:
"""Place new order"""
self.orders[order.id] = order
# Route to exchange/broker
self.route_order(order)
return order.id
def cancel_order(self, order_id: str) -> bool:
"""Cancel existing order"""
if order_id in self.orders:
order = self.orders[order_id]
if order.status in ["NEW", "PARTIALLY_FILLED"]:
order.status = "CANCELLED"
return True
return False
def route_order(self, order: Order):
"""Smart order routing"""
# Check for best execution venue
venues = self.get_venue_quotes(order.symbol)
best_venue = self.select_best_venue(venues, order)
# Send order to venue
self.send_to_venue(order, best_venue)
```
## Risk Management
```python
class RiskManager:
def __init__(self, max_position_size: float = 0.1,
max_portfolio_risk: float = 0.02,
stop_loss_pct: float = 0.05):
self.max_position_size = max_position_size
self.max_portfolio_risk = max_portfolio_risk
self.stop_loss_pct = stop_loss_pct
def calculate_position_size(self, capital: float, price: float,
volatility: float) -> int:
"""Calculate optimal position size using Kelly Criterion"""
max_position_value = capital * self.max_position_size
shares = int(max_position_value / price)
# Adjust for volatility
risk_adjusted_shares = int(shares * (1 - volatility))
return max(0, risk_adjusted_shares)
def check_risk_limits(self, portfolio: dict) -> bool:
"""Check if portfolio is within risk limits"""
total_value = portfolio['cash'] + sum(p['value'] for p in portfolio['positions'])
total_risk = sum(p['risk'] for p in portfolio['positions'])
if total_risk / total_value > self.max_portfolio_risk:
return False
return True
def calculate_var(self, returns: pd.Series, confidence: float = 0.95) -> float:
"""Calculate Value at Risk"""
return returns.quantile(1 - confidence)
```
## Market Data Processing
```python
class MarketDataProcessor:
def __init__(self):
self.order_book = {'bids': [], 'asks': []}
def process_tick(self, tick: dict):
"""Process real-time tick data"""
if tick['type'] == 'trade':
self.process_trade(tick)
elif tick['type'] == 'quote':
self.update_order_book(tick)
def update_order_book(self, quote: dict):
"""Update order book with new quote"""
if quote['side'] == 'bid':
self.order_book['bids'] = sorted(
self.order_book['bids'] + [(quote['price'], quote['size'])],
key=lambda x: x[0],
reverse=True
)[:100] # Keep top 100
else:
self.order_book['asks'] = sorted(
self.order_book['asks'] + [(quote['price'], quote['size'])],
key=lambda x: x[0]
)[:100]
def calculate_vwap(self, trades: list) -> float:
"""Calculate Volume Weighted Average Price"""
total_volume = sum(t['volume'] for t in trades)
vwap = sum(t['price'] * t['volume'] for t in trades) / total_volume
return vwap
def calculate_spread(self) -> float:
"""Calculate bid-ask spread"""
if self.order_book['bids'] and self.order_book['asks']:
best_bid = self.order_book['bids'][0][0]
best_ask = self.order_book['asks'][0][0]
return best_ask - best_bid
return 0
```
## Best Practices
- Always backtest strategies on historical data
- Implement proper risk management
- Monitor execution quality (slippage, fill rates)
- Use limit orders to control execution price
- Implement circuit breakers for risk control
- Log all trades and orders for audit
- Test in paper trading before live deployment
- Monitor latency in real-time systems
- Implement failover mechanisms
- Regular strategy performance review
## Anti-Patterns
❌ No backtesting before live trading
❌ Ignoring transaction costs
❌ Over-optimization (curve fitting)
❌ No risk management
❌ Trading without stop losses
❌ Ignoring market microstructure
❌ No position sizing strategy
## Resources
- QuantConnect: https://www.quantconnect.com/
- Zipline: https://www.zipline.io/
- Backtrader: https://www.backtrader.com/
- Interactive Brokers API: https://interactivebrokers.github.io/
This skill provides expert-level guidance for building, testing, and operating algorithmic trading systems, quantitative strategies, market data pipelines, and execution engines. It focuses on practical implementations for strategy design, backtesting, order management, risk controls, and real-time market processing. The content emphasizes reliable execution, measurable performance, and production readiness.
The skill inspects strategy design patterns (momentum, mean reversion, SMA crossover, arbitrage) and maps them to concrete implementations for backtesting and live execution. It reviews market data handling (tick processing, order book maintenance, VWAP/spread calculation), order lifecycle management (routing, placement, cancellation) and risk modules (position sizing, VaR, stop-loss enforcement). Outputs include recommended code structures, performance metrics, and operational checks for deployment.
Does the skill cover low-latency HFT specifics?
It outlines HFT concepts and market microstructure but focuses on safe production patterns; extremely low-latency HFT requires specialized infrastructure beyond typical code-level guidance.
How does it recommend handling transaction costs and slippage?
Always include realistic fees and slippage models in backtests, monitor fill rates in paper/live runs, and prefer limit orders or execution algorithms to control execution cost.