home / skills / personamanagmentlayer / pcl / insurance-expert

insurance-expert skill

/stdlib/domains/insurance-expert

This skill provides expert guidance on insurance systems, underwriting, claims, and risk analytics to streamline policies and prevent fraud.

npx playbooks add skill personamanagmentlayer/pcl --skill insurance-expert

Review the files below or copy the command above to add this skill to your agents.

Files (1)
SKILL.md
22.2 KB
---
name: insurance-expert
version: 1.0.0
description: Expert-level insurance systems, underwriting, claims processing, actuarial analysis, risk assessment, and insurtech solutions
category: domains
tags: [insurance, underwriting, claims, actuarial, risk, insurtech]
allowed-tools:
  - Read
  - Write
  - Edit
---

# Insurance Expert

Expert guidance for insurance systems, underwriting, claims processing, actuarial analysis, risk assessment, fraud detection, and modern insurtech solutions.

## Core Concepts

### Insurance Systems
- Policy Administration Systems (PAS)
- Claims Management Systems
- Underwriting workstations
- Actuarial modeling systems
- Reinsurance management
- Agency management systems
- Document management

### Insurance Types
- Property & Casualty (P&C)
- Life insurance
- Health insurance
- Auto insurance
- Commercial insurance
- Specialty insurance
- Cyber insurance

### Standards and Regulations
- ACORD standards (insurance data exchange)
- SOX compliance
- State insurance regulations
- NAIC (National Association of Insurance Commissioners)
- GDPR for customer data
- Anti-money laundering (AML)

## Policy Administration System

```python
from dataclasses import dataclass
from datetime import datetime, timedelta
from decimal import Decimal
from typing import List, Optional
from enum import Enum

class PolicyStatus(Enum):
    QUOTED = "quoted"
    BOUND = "bound"
    ACTIVE = "active"
    CANCELLED = "cancelled"
    EXPIRED = "expired"
    LAPSED = "lapsed"

class CoverageType(Enum):
    LIABILITY = "liability"
    COLLISION = "collision"
    COMPREHENSIVE = "comprehensive"
    MEDICAL = "medical"
    UNINSURED_MOTORIST = "uninsured_motorist"

@dataclass
class Insured:
    """Insured party information"""
    insured_id: str
    first_name: str
    last_name: str
    date_of_birth: datetime
    address: dict
    phone: str
    email: str
    drivers_license: str
    credit_score: int

@dataclass
class Coverage:
    """Insurance coverage details"""
    coverage_type: CoverageType
    limit: Decimal
    deductible: Decimal
    premium: Decimal

@dataclass
class Policy:
    """Insurance policy"""
    policy_number: str
    insured: Insured
    policy_type: str  # 'auto', 'home', 'life', etc.
    effective_date: datetime
    expiration_date: datetime
    status: PolicyStatus
    coverages: List[Coverage]
    total_premium: Decimal
    payment_plan: str  # 'annual', 'semi-annual', 'quarterly', 'monthly'
    underwriter_id: str
    risk_score: float

class PolicyAdministrationSystem:
    """Policy administration and management"""

    def __init__(self):
        self.policies = {}
        self.quotes = {}

    def generate_quote(self, application: dict) -> dict:
        """Generate insurance quote"""
        # Extract applicant information
        insured = Insured(
            insured_id=self._generate_id(),
            first_name=application['first_name'],
            last_name=application['last_name'],
            date_of_birth=application['date_of_birth'],
            address=application['address'],
            phone=application['phone'],
            email=application['email'],
            drivers_license=application.get('drivers_license', ''),
            credit_score=application.get('credit_score', 700)
        )

        # Calculate risk score
        risk_score = self._calculate_risk_score(insured, application)

        # Determine coverages and premiums
        coverages = self._determine_coverages(application, risk_score)

        # Calculate total premium
        total_premium = sum(c.premium for c in coverages)

        # Apply discounts
        discounts = self._calculate_discounts(application)
        discount_amount = total_premium * (sum(discounts.values()) / 100)
        total_premium = total_premium - discount_amount

        quote = {
            'quote_id': self._generate_id(),
            'insured': insured,
            'policy_type': application['policy_type'],
            'coverages': coverages,
            'total_premium': total_premium,
            'risk_score': risk_score,
            'discounts': discounts,
            'valid_until': datetime.now() + timedelta(days=30)
        }

        self.quotes[quote['quote_id']] = quote

        return quote

    def _calculate_risk_score(self, insured: Insured, application: dict) -> float:
        """Calculate risk score for underwriting"""
        score = 50.0  # Base score

        # Age factor (auto insurance)
        age = (datetime.now() - insured.date_of_birth).days / 365.25
        if age < 25:
            score += 20
        elif age < 65:
            score -= 10
        else:
            score += 5

        # Credit score factor
        if insured.credit_score < 600:
            score += 15
        elif insured.credit_score > 750:
            score -= 10

        # Driving history (auto insurance)
        if application.get('accidents_3yr', 0) > 0:
            score += application['accidents_3yr'] * 10

        if application.get('violations_3yr', 0) > 0:
            score += application['violations_3yr'] * 5

        # Claims history
        if application.get('claims_5yr', 0) > 0:
            score += application['claims_5yr'] * 8

        return max(0, min(100, score))  # Normalize to 0-100

    def _determine_coverages(self, application: dict, risk_score: float) -> List[Coverage]:
        """Determine coverages and calculate premiums"""
        coverages = []
        base_rate = Decimal('500')

        # Risk multiplier
        risk_multiplier = Decimal(str(1 + (risk_score / 100)))

        if application['policy_type'] == 'auto':
            # Liability coverage (required)
            coverages.append(Coverage(
                coverage_type=CoverageType.LIABILITY,
                limit=Decimal('100000'),
                deductible=Decimal('0'),
                premium=base_rate * risk_multiplier
            ))

            # Collision coverage
            if application.get('include_collision', True):
                deductible = Decimal(str(application.get('collision_deductible', 500)))
                premium = base_rate * Decimal('0.6') * risk_multiplier
                # Adjust premium based on deductible
                premium = premium * (Decimal('1000') / deductible) * Decimal('0.5')

                coverages.append(Coverage(
                    coverage_type=CoverageType.COLLISION,
                    limit=Decimal(str(application.get('vehicle_value', 25000))),
                    deductible=deductible,
                    premium=premium
                ))

            # Comprehensive coverage
            if application.get('include_comprehensive', True):
                deductible = Decimal(str(application.get('comprehensive_deductible', 500)))
                premium = base_rate * Decimal('0.3') * risk_multiplier

                coverages.append(Coverage(
                    coverage_type=CoverageType.COMPREHENSIVE,
                    limit=Decimal(str(application.get('vehicle_value', 25000))),
                    deductible=deductible,
                    premium=premium
                ))

        return coverages

    def _calculate_discounts(self, application: dict) -> dict:
        """Calculate applicable discounts"""
        discounts = {}

        # Multi-policy discount
        if application.get('has_other_policies', False):
            discounts['multi_policy'] = 15  # 15%

        # Good driver discount
        if application.get('accidents_3yr', 0) == 0 and application.get('violations_3yr', 0) == 0:
            discounts['good_driver'] = 10  # 10%

        # Safety features discount
        if application.get('has_airbags', False):
            discounts['safety_features'] = 5  # 5%

        # Anti-theft discount
        if application.get('has_alarm', False):
            discounts['anti_theft'] = 5  # 5%

        return discounts

    def bind_policy(self, quote_id: str) -> Policy:
        """Bind quote to create active policy"""
        quote = self.quotes.get(quote_id)
        if not quote:
            raise ValueError("Quote not found")

        # Check if quote is still valid
        if datetime.now() > quote['valid_until']:
            raise ValueError("Quote has expired")

        policy_number = self._generate_policy_number()

        policy = Policy(
            policy_number=policy_number,
            insured=quote['insured'],
            policy_type=quote['policy_type'],
            effective_date=datetime.now(),
            expiration_date=datetime.now() + timedelta(days=365),
            status=PolicyStatus.ACTIVE,
            coverages=quote['coverages'],
            total_premium=quote['total_premium'],
            payment_plan='annual',
            underwriter_id='UW001',
            risk_score=quote['risk_score']
        )

        self.policies[policy_number] = policy

        return policy

    def renew_policy(self, policy_number: str) -> dict:
        """Renew existing policy"""
        policy = self.policies.get(policy_number)
        if not policy:
            return {'error': 'Policy not found'}

        # Re-evaluate risk and premium
        # In production, would pull updated data
        new_risk_score = policy.risk_score * 0.95  # Loyalty discount factor

        # Calculate new premium (with inflation adjustment)
        inflation_factor = Decimal('1.03')  # 3% increase
        new_premium = policy.total_premium * inflation_factor * Decimal(str(0.95))  # Renewal discount

        return {
            'policy_number': policy_number,
            'current_premium': float(policy.total_premium),
            'renewal_premium': float(new_premium),
            'effective_date': policy.expiration_date,
            'expiration_date': policy.expiration_date + timedelta(days=365)
        }

    def cancel_policy(self, policy_number: str, reason: str, effective_date: datetime = None) -> dict:
        """Cancel policy"""
        policy = self.policies.get(policy_number)
        if not policy:
            return {'error': 'Policy not found'}

        if effective_date is None:
            effective_date = datetime.now()

        # Calculate earned premium
        days_active = (effective_date - policy.effective_date).days
        total_days = (policy.expiration_date - policy.effective_date).days
        earned_premium = policy.total_premium * (Decimal(days_active) / Decimal(total_days))

        # Calculate refund
        refund_amount = policy.total_premium - earned_premium

        policy.status = PolicyStatus.CANCELLED

        return {
            'policy_number': policy_number,
            'cancellation_date': effective_date.isoformat(),
            'reason': reason,
            'earned_premium': float(earned_premium),
            'refund_amount': float(refund_amount)
        }

    def _generate_policy_number(self) -> str:
        """Generate unique policy number"""
        import uuid
        return f"POL-{uuid.uuid4().hex[:10].upper()}"

    def _generate_id(self) -> str:
        import uuid
        return uuid.uuid4().hex[:12].upper()
```

## Claims Management System

```python
from enum import Enum

class ClaimStatus(Enum):
    REPORTED = "reported"
    INVESTIGATING = "investigating"
    APPROVED = "approved"
    DENIED = "denied"
    CLOSED = "closed"

@dataclass
class Claim:
    """Insurance claim"""
    claim_number: str
    policy_number: str
    claim_type: str  # 'collision', 'theft', 'liability', etc.
    date_of_loss: datetime
    reported_date: datetime
    description: str
    estimated_loss: Decimal
    status: ClaimStatus
    adjuster_id: Optional[str]
    reserve_amount: Decimal
    paid_amount: Decimal
    deductible: Decimal

class ClaimsManagementSystem:
    """Claims processing and management"""

    def __init__(self):
        self.claims = {}
        self.fraud_detector = FraudDetectionSystem()

    def file_claim(self, claim_data: dict) -> Claim:
        """File new insurance claim"""
        claim_number = self._generate_claim_number()

        claim = Claim(
            claim_number=claim_number,
            policy_number=claim_data['policy_number'],
            claim_type=claim_data['claim_type'],
            date_of_loss=claim_data['date_of_loss'],
            reported_date=datetime.now(),
            description=claim_data['description'],
            estimated_loss=Decimal(str(claim_data.get('estimated_loss', 0))),
            status=ClaimStatus.REPORTED,
            adjuster_id=None,
            reserve_amount=Decimal('0'),
            deductible=Decimal(str(claim_data.get('deductible', 0))),
            paid_amount=Decimal('0')
        )

        # Fraud detection screening
        fraud_result = self.fraud_detector.screen_claim(claim)
        if fraud_result['fraud_score'] > 0.8:
            claim.status = ClaimStatus.INVESTIGATING
            self._flag_for_siu(claim, fraud_result)  # Special Investigation Unit

        # Auto-assign adjuster
        claim.adjuster_id = self._assign_adjuster(claim)

        # Set reserve amount
        claim.reserve_amount = self._calculate_reserve(claim)

        self.claims[claim_number] = claim

        return claim

    def investigate_claim(self, claim_number: str) -> dict:
        """Investigate claim details"""
        claim = self.claims.get(claim_number)
        if not claim:
            return {'error': 'Claim not found'}

        claim.status = ClaimStatus.INVESTIGATING

        # Gather evidence
        investigation_steps = [
            'Review policy coverage',
            'Verify loss details',
            'Inspect damage',
            'Review police report (if applicable)',
            'Interview claimant',
            'Review medical records (if applicable)',
            'Obtain repair estimates'
        ]

        return {
            'claim_number': claim_number,
            'status': claim.status.value,
            'investigation_steps': investigation_steps,
            'estimated_completion': (datetime.now() + timedelta(days=14)).isoformat()
        }

    def approve_claim(self, claim_number: str, approved_amount: Decimal) -> dict:
        """Approve claim for payment"""
        claim = self.claims.get(claim_number)
        if not claim:
            return {'error': 'Claim not found'}

        # Validate coverage
        if not self._validate_coverage(claim):
            return {'error': 'Loss not covered under policy'}

        # Apply deductible
        payment_amount = approved_amount - claim.deductible
        if payment_amount <= 0:
            return {'error': 'Approved amount does not exceed deductible'}

        claim.status = ClaimStatus.APPROVED
        claim.paid_amount = payment_amount

        # Process payment
        payment_result = self._process_payment(claim, payment_amount)

        return {
            'claim_number': claim_number,
            'approved_amount': float(approved_amount),
            'deductible': float(claim.deductible),
            'payment_amount': float(payment_amount),
            'payment_method': payment_result['method'],
            'payment_date': datetime.now().isoformat()
        }

    def deny_claim(self, claim_number: str, reason: str) -> dict:
        """Deny claim"""
        claim = self.claims.get(claim_number)
        if not claim:
            return {'error': 'Claim not found'}

        claim.status = ClaimStatus.DENIED

        # Send denial letter
        self._send_denial_letter(claim, reason)

        return {
            'claim_number': claim_number,
            'status': 'denied',
            'reason': reason,
            'appeal_deadline': (datetime.now() + timedelta(days=60)).isoformat()
        }

    def _calculate_reserve(self, claim: Claim) -> Decimal:
        """Calculate reserve amount for claim"""
        # Reserve is an estimate of total claim cost
        # Based on claim type and severity
        reserve_multipliers = {
            'collision': Decimal('1.5'),
            'theft': Decimal('1.3'),
            'liability': Decimal('2.0'),
            'comprehensive': Decimal('1.4')
        }

        multiplier = reserve_multipliers.get(claim.claim_type, Decimal('1.5'))
        reserve = claim.estimated_loss * multiplier

        return reserve

    def _assign_adjuster(self, claim: Claim) -> str:
        """Auto-assign claim to adjuster"""
        # Would use load balancing and expertise matching
        return "ADJ001"

    def _validate_coverage(self, claim: Claim) -> bool:
        """Validate that loss is covered under policy"""
        # Would check policy coverages against claim type
        return True

    def _process_payment(self, claim: Claim, amount: Decimal) -> dict:
        """Process claim payment"""
        # Integration with payment system
        return {'method': 'direct_deposit', 'transaction_id': 'TXN123'}

    def _flag_for_siu(self, claim: Claim, fraud_result: dict):
        """Flag claim for Special Investigation Unit"""
        # Implementation would notify SIU
        pass

    def _send_denial_letter(self, claim: Claim, reason: str):
        """Send claim denial letter"""
        # Implementation would generate and send letter
        pass

    def _generate_claim_number(self) -> str:
        import uuid
        return f"CLM-{uuid.uuid4().hex[:10].upper()}"

class FraudDetectionSystem:
    """Fraud detection for claims"""

    def screen_claim(self, claim: Claim) -> dict:
        """Screen claim for fraud indicators"""
        fraud_score = 0.0
        indicators = []

        # Check for suspicious patterns
        # Late reporting
        days_to_report = (claim.reported_date - claim.date_of_loss).days
        if days_to_report > 30:
            fraud_score += 0.2
            indicators.append('Late reporting')

        # High loss amount
        if claim.estimated_loss > Decimal('50000'):
            fraud_score += 0.15
            indicators.append('High loss amount')

        # Multiple claims (would check historical data)
        # Implementation would query claim history

        return {
            'fraud_score': fraud_score,
            'indicators': indicators,
            'recommendation': 'investigate' if fraud_score > 0.5 else 'proceed'
        }
```

## Actuarial Analysis

```python
import numpy as np
from scipy import stats

class ActuarialAnalysis:
    """Actuarial modeling and analysis"""

    def calculate_loss_ratio(self,
                            total_claims_paid: Decimal,
                            total_premiums_earned: Decimal) -> dict:
        """Calculate loss ratio"""
        if total_premiums_earned == 0:
            return {'error': 'No premiums earned'}

        loss_ratio = (total_claims_paid / total_premiums_earned) * 100

        # Interpret loss ratio
        if loss_ratio < 60:
            assessment = "Profitable"
        elif loss_ratio < 75:
            assessment = "Target range"
        elif loss_ratio < 100:
            assessment = "Unprofitable"
        else:
            assessment = "Significant losses"

        return {
            'loss_ratio': float(loss_ratio),
            'claims_paid': float(total_claims_paid),
            'premiums_earned': float(total_premiums_earned),
            'assessment': assessment
        }

    def calculate_combined_ratio(self,
                                 loss_ratio: float,
                                 expense_ratio: float) -> dict:
        """Calculate combined ratio"""
        combined_ratio = loss_ratio + expense_ratio

        profitable = combined_ratio < 100

        return {
            'combined_ratio': combined_ratio,
            'loss_ratio': loss_ratio,
            'expense_ratio': expense_ratio,
            'profitable': profitable,
            'underwriting_gain_loss': 100 - combined_ratio
        }

    def estimate_reserves(self, claim_data: List[dict]) -> dict:
        """Estimate loss reserves using chain ladder method"""
        # Simplified chain ladder method
        # In production, would use more sophisticated methods

        open_claims = [c for c in claim_data if c['status'] != 'closed']
        total_incurred = sum(c['paid_amount'] + c['reserve'] for c in open_claims)

        return {
            'total_reserve': total_incurred,
            'open_claim_count': len(open_claims),
            'method': 'chain_ladder'
        }

    def price_product(self,
                     expected_claims: Decimal,
                     expense_ratio: float,
                     profit_margin: float) -> Decimal:
        """Calculate premium for insurance product"""
        # Pure premium (expected losses)
        pure_premium = expected_claims

        # Load for expenses
        expense_load = pure_premium * Decimal(str(expense_ratio / 100))

        # Load for profit
        profit_load = pure_premium * Decimal(str(profit_margin / 100))

        # Total premium
        total_premium = pure_premium + expense_load + profit_load

        return total_premium.quantize(Decimal('0.01'))
```

## Best Practices

### Underwriting
- Use consistent risk assessment criteria
- Implement automated underwriting for simple cases
- Maintain underwriting guidelines documentation
- Use predictive analytics for risk scoring
- Conduct regular portfolio reviews
- Segment risks appropriately
- Monitor loss ratios by segment

### Claims Processing
- Provide 24/7 claim reporting
- Assign adjusters quickly
- Set appropriate reserves
- Communicate regularly with claimants
- Implement fraud detection
- Track claim cycle time
- Use photos and video for inspections

### Fraud Prevention
- Screen all claims for fraud indicators
- Use predictive analytics
- Maintain Special Investigation Unit (SIU)
- Share fraud data industry-wide
- Train staff on fraud detection
- Implement identity verification
- Monitor for organized fraud rings

### Compliance
- Maintain state licensing
- Follow NAIC model laws
- Implement proper data privacy controls
- Conduct regular compliance audits
- Maintain required reserves
- File timely regulatory reports
- Follow fair claims practices

## Anti-Patterns

❌ Manual underwriting for all policies
❌ No fraud detection system
❌ Slow claims processing
❌ Inadequate loss reserves
❌ Poor customer communication
❌ No data analytics
❌ Ignoring regulatory changes
❌ Inconsistent underwriting decisions
❌ No claims automation

## Resources

- ACORD Standards: https://www.acord.org/
- NAIC (National Association of Insurance Commissioners): https://www.naic.org/
- ISO (Insurance Services Office): https://www.verisk.com/iso/
- Society of Actuaries: https://www.soa.org/
- Casualty Actuarial Society: https://www.casact.org/
- Insurance Information Institute: https://www.iii.org/
- A.M. Best (ratings): https://www.ambest.com/

Overview

This skill provides expert-level guidance and tooling patterns for insurance systems, underwriting, claims processing, actuarial analysis, risk assessment, fraud detection, and modern insurtech solutions. It condenses best practices, core data models, and practical workflows for Policy Administration Systems (PAS), Claims Management, and pricing/renewal logic. The content is actionable for architects, product managers, and engineers building insurance platforms.

How this skill works

The skill inspects and explains core domain models (policies, coverages, claims, insured parties) and common system components such as PAS, claims systems, underwriting workstations, and actuarial tools. It walks through standard flows: quote generation, risk scoring, binding, renewal, claim filing, fraud screening, investigation, reserving, and cancellation. It also highlights regulatory and data standards relevant to implementation and integration.

When to use it

  • Designing or evaluating a new policy administration or claims platform
  • Defining underwriting rules, risk scoring, or premium calculation logic
  • Integrating fraud detection and SIU workflows into claims processing
  • Preparing technical requirements that must meet ACORD, NAIC, GDPR, or state regulation constraints
  • Building or auditing actuarial models, reserving logic, or renewal automation

Best practices

  • Model policy and coverage objects explicitly (status, effective/expiration dates, premiums, payment plan) to simplify lifecycle logic
  • Keep risk scoring transparent: separate data inputs, feature engineering, and scoring functions for auditability
  • Automate quote-to-bind flows with validity windows and idempotent identifiers to avoid duplicate policies
  • Embed fraud screening early in claims intake and route high-risk cases to a Special Investigation Unit (SIU)
  • Apply modular interfaces for external services (billing, reinsurance, document mgmt) and follow ACORD payloads where possible

Example use cases

  • Auto insurance quote engine: calculate risk score from age, credit, driving history and produce multi-coverage quote with discounts
  • Policy lifecycle management: generate, bind, renew, and cancel policies with earned premium and refund computation
  • Claims intake pipeline: file claims, run fraud screening, auto-assign adjusters, set reserves and progress to investigation or approval
  • Renewal automation: compute renewal premiums with inflation and loyalty discounts and produce renewal offers
  • Actuarial prototyping: test simple reserving and premium change scenarios using transparent multipliers and discount rules

FAQ

Does the skill cover regulatory compliance?

Yes. It highlights applicable standards and regulations such as ACORD, NAIC, GDPR, SOX and AML considerations and how they affect design choices.

Can I use the risk scoring logic in production?

The provided scoring and premium formulas are illustrative. Use them as a starting point and validate with actuarial review, calibration, and compliance checks before production.